Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 41 papers

The HIV-1 Envelope Glycoprotein C3/V4 Region Defines a Prevalent Neutralization Epitope following Immunization.

  • Lin Lei‎ et al.
  • Cell reports‎
  • 2019‎

Despite recent progress in engineering native trimeric HIV-1 envelope glycoprotein (Env) mimics as vaccine candidates, Env trimers often induce vaccine-matched neutralizing antibody (NAb) responses. Understanding the specificities of autologous NAb responses and the underlying molecular mechanisms restricting the neutralization breadth is therefore informative to improve vaccine efficacy. Here, we delineate the response specificity by single B cell sorting and serum analysis of guinea pigs immunized with BG505 SOSIP.664 Env trimers. Our results reveal a prominent immune target containing both conserved and strain-specific residues in the C3/V4 region of Env in trimer-vaccinated animals. The defined NAb response shares a high degree of similarity with the early NAb response developed by a naturally infected infant from whom the HIV virus strain BG505 was isolated and later developed a broadly NAb response. Our study describes strain-specific responses and their possible evolution pathways, thereby highlighting the potential to broaden NAb responses by immunogen re-design.


Upregulation of miR-181a impairs hepatic glucose and lipid homeostasis.

  • Xiliang Du‎ et al.
  • Oncotarget‎
  • 2017‎

The contributions of altered post-transcriptional gene silencing to the development of metabolic disorders remain poorly understood thus far. The objective of this study was to evaluate the roles of miR-181a in the regulation of hepatic glucose and lipid metabolism. MiR-181a is abundantly expressed in the liver, and we found that blood and hepatic miR-181a levels were significantly increased in patients and dairy cows with non-alcoholic fatty liver disease, as well as in high-fat diet and ob/ob mice. We determined that sirtuin1 is a target of miR-181a. Moreover, we found that hepatic sirtuin1 and peroxisome proliferator-activated receptor-γ coactivator-1α expression levels are downregulated, and acetylated peroxisome proliferator-activated receptor-γ coactivator-1α expression levels are upregulated in patients and dairy cows with non-alcoholic fatty liver disease, as well as in high-fat diet and ob/ob mice. MiR-181a overexpression inhibits the sirtuin1-peroxisome proliferator-activated receptor-γ coactivator-1α pathway, reduces insulin sensitivity, and increases gluconeogenesis and lipid synthesis in dairy cow hepatocytes and HepG2 cells. Conversely, silencing of miR-181a over-activates the sirtuin1-peroxisome proliferator-activated receptor-γ coactivator-1α pathway, increases insulin sensitivity and glycogen content, and decreases gluconeogenesis and lipid synthesis in hepatocytes, even under non-esterified fatty acids treatment conditions. Furthermore, miR-181a overexpression or sirtuin1 knockdown in mice increases lipid accumulation and decreases insulin sensitivity and glycogen content in the liver. Taken together, these findings indicate that increased hepatic miR-181a impairs glucose and lipid homeostasis by silencing sirtuin1 in non-alcoholic fatty liver disease.


Exosomal miR-141-3p regulates osteoblast activity to promote the osteoblastic metastasis of prostate cancer.

  • Yun Ye‎ et al.
  • Oncotarget‎
  • 2017‎

Exosomes from cancer cells, which contain microRNA and reach metastasis loci prior to cancer cells, stimulate the formation of a metastatic microenvironment. Previous studies have shown that exosomal miR-141-3p is associated with metastatic prostate cancer (PCa). However, the role and regulatory mechanism of miR-141-3p in the microenvironment of bone metastases require further study. In this study, we performed a series of experiments in vivo and in vitro to determine whether exosomal miR-141-3p from MDA PCa 2b cells regulates osteoblast activity to promote osteoblastic metastasis. We demonstrate that extracts obtained from cell culture supernatants contained exosomes and that miR-141-3p levels were significantly higher in MDA PCa 2b cell exosomes. Via confocal imaging, numerous MDA PCa 2b exosomes were observed to enter osteoblasts, and miR-141-3p was transferred to osteoblasts through MDA PCa 2b exosomes in vitro. Exosomal miR-141-3p from MDA PCa 2b promoted osteoblast activity and increased osteoprotegerin OPG expression. miR-141-3p suppressed the protein levels of the target gene DLC1, indicating its functional significance in activating the p38MAPK pathway. In animal experiments, exosomal miR-141-3p had bone-target specificity and promoted osteoblast activity. Mice injected with miR-141-3p-mimics exosomes developed apparent osteoblastic bone metastasis. Exosomal miR-141-3p from MDA PCa 2b cells promoted osteoblast activity and regulated the microenvironment of bone metastases, which plays an important role in the formation of bone metastases and osteogenesis damage in PCa. Clarifying the specific mechanism of bone metastasis will help generate new possibilities for the treatment of PCa.


Exosomes derived from osteogenic tumor activate osteoclast differentiation and concurrently inhibit osteogenesis by transferring COL1A1-targeting miRNA-92a-1-5p.

  • Lijuan Yu‎ et al.
  • Journal of extracellular vesicles‎
  • 2021‎

In patients with prostate cancer (PCa), bone lesions appear osteoblastic in radiographs; however, pathological fractures frequently occur in PCa patients, and bone resorption is observed in all metastatic lesions under histopathologic assessment. The mechanisms that balance the activities of osteoblasts and osteoclasts in PCa patients remain unclear. We unexpectedly discovered that PCa exosomes are critical mediators in the regulation of bone homeostasis that results in osteoclastic lesions and thereby promotes tumor growth in bone. We evaluated how exosomes derived from osteoblastic, osteoclastic, and mixed PCa cell lines affect osteoblast and osteoclast differentiation, revealing that all three types of PCa exosomes promoted osteoclastogenesis in vitro and induced osteolysis in vivo. Mechanistically, microRNAs (miRNAs) delivered by PCa exosomes were found to play several key roles in bone homeostasis. Among the delivered miRNAs, miR-92a-1-5p, the most abundant miRNA, downregulated type I collagen expression by directly targeting COL1A1, and thus promoting osteoclast differentiation and inhibiting osteoblastogenesis. Furthermore, PCa exosomes also markedly reduced type I collagen expression in vivo. Our findings not only offer a novel perspective on tumor bone metastasis, where-contrary to our initial hypothesis-exosomes derived from an osteoblastic tumor induce osteoclast differentiation, but also suggest potential therapeutic targets for PCa bone metastasis.


Gut Microbiome Profiles Are Associated With Type 2 Diabetes in Urban Africans.

  • Ayo P Doumatey‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2020‎

Gut dysbiosis has been associated with several disease outcomes including diabetes in human populations. Currently, there are no studies of the gut microbiome composition in relation to type 2 diabetes (T2D) in Africans. Here, we describe the profile of the gut microbiome in non-diabetic adults (controls) and investigate the association between gut microbiota and T2D in urban West Africans. Gut microbiota composition was determined in 291 Nigerians (98 cases, 193 controls) using fecal 16S V4 rRNA gene sequencing done on the Illumina MiSeq platform. Data analysis of operational taxonomic units (OTU) was conducted to describe microbiome composition and identify differences between T2D and controls. The most abundant phyla were Firmicutes, Actinobacteria, and Bacteroidetes. Clostridiaceae, and Peptostreptococcaceaea were significantly lower in cases than controls (p < 0.001). Feature selection analysis identified a panel of 18 OTUs enriched in cases that included Desulfovibrio piger, Prevotella, Peptostreptococcus, and Eubacterium. A panel of 17 OTUs that was enriched in the controls included Collinsella, Ruminococcus lactaris, Anaerostipes, and Clostridium. OTUs with strain-level annotation showing the largest fold-change included Cellulosilyticum ruminicola (log2FC = -3.1; p = 4.2 × 10-5), Clostridium paraputrificum (log2FC = -2.5; p = 0.005), and Clostridium butyricum (log2FC = -1.76; p = 0.01), all lower in cases. These findings are notable because supplementation with Clostridium butyricum and Desulfovibrio piger has been shown to improve hyperglycemia and reduce insulin resistance in murine models. This first investigation of gut microbiome and diabetes in urban Africans shows that T2D is associated with compositional changes in gut microbiota highlighting the possibility of developing strategies to improve glucose control by modifying bacterial composition in the gut.


A functional methylation signature to predict the prognosis of Chinese lung adenocarcinoma based on TCGA.

  • Ke Wang‎ et al.
  • Cancer medicine‎
  • 2022‎

Lung cancer is the leading cause of cancer morbidity and mortality worldwide, however, the individualized treatment is still unsatisfactory. DNA methylation can affect gene regulation and may be one of the most valuable biomarkers in predicting the prognosis of lung adenocarcinoma. This study was aimed to identify methylation CpG sites that may be used to predict lung adenocarcinoma prognosis.


Prostate cancer small extracellular vesicles participate in androgen-independent transformation of prostate cancer by transferring let-7a-5p.

  • Lin Lei‎ et al.
  • Heliyon‎
  • 2022‎

Androgen deprivation therapy (ADT) is a standard treatment for advanced prostate cancer (PCa). However, after 2-3 years ADT treatment, prostate cancer inevitably transits from androgen-dependent PCa (ADPC) to androgen-independent PCa (AIPC), which has a poor prognosis owing to its unclear mechanism and lack of effective therapeutic targets. Small extracellular vesicles (sEVs) play a vital role in the development of cancer. However, the role of PCa sEVs in the transformation of AIPC remains poorly understood.


Promotor methylation status of MAPK4 is a novel epigenetic biomarker for prognosis of recurrence in patients with thymic epithelial tumors.

  • Wei Guan‎ et al.
  • Thoracic cancer‎
  • 2022‎

The prognosis of thymic epithelial tumors (TETs) currently relies on the commonly adopted WHO classification and Masaoka staging system, which cannot reflect the undefined biological behaviors limiting them as prognostic factors.


The E3 ubiquitin ligase NEDD4-1 protects against acetaminophen-induced liver injury by targeting VDAC1 for degradation.

  • Yiwei Zhu‎ et al.
  • Acta pharmaceutica Sinica. B‎
  • 2023‎

Acetaminophen (APAP) overdose is a major cause of liver injury. Neural precursor cell expressed developmentally downregulated 4-1 (NEDD4-1) is an E3 ubiquitin ligase that has been implicated in the pathogenesis of numerous liver diseases; however, its role in APAP-induced liver injury (AILI) is unclear. Thus, this study aimed to investigate the role of NEDD4-1 in the pathogenesis of AILI. We found that NEDD4-1 was dramatically downregulated in response to APAP treatment in mouse livers and isolated mouse hepatocytes. Hepatocyte-specific NEDD4-1 knockout exacerbated APAP-induced mitochondrial damage and the resultant hepatocyte necrosis and liver injury, while hepatocyte-specific NEDD4-1 overexpression mitigated these pathological events both in vivo and in vitro. Additionally, hepatocyte NEDD4-1 deficiency led to marked accumulation of voltage-dependent anion channel 1 (VDAC1) and increased VDAC1 oligomerization. Furthermore, VDAC1 knockdown alleviated AILI and weakened the exacerbation of AILI caused by hepatocyte NEDD4-1 deficiency. Mechanistically, NEDD4-1 was found to interact with the PPTY motif of VDAC1 through its WW domain and regulate K48-linked ubiquitination and degradation of VDAC1. Our present study indicates that NEDD4-1 is a suppressor of AILI and functions by regulating the degradation of VDAC1.


Efficient electrospray deposition of surfaces smaller than the spray plume.

  • Sarah H Park‎ et al.
  • Nature communications‎
  • 2023‎

Electrospray deposition (ESD) is a promising technique for depositing micro-/nano-scale droplets and particles with high quality and repeatability. It is particularly attractive for surface coating of costly and delicate biomaterials and bioactive compounds. While high efficiency of ESD has only been successfully demonstrated for spraying surfaces larger than the spray plume, this work extends its utility to smaller surfaces. It is shown that by architecting the local "charge landscape", ESD coatings of surfaces smaller than plume size can be achieved. Efficiency approaching 100% is demonstrated with multiple model materials, including biocompatible polymers, proteins, and bioactive small molecules, on both flat and microneedle array targets. UV-visible spectroscopy and high-performance liquid chromatography measurements validate the high efficiency and quality of the sprayed material. Here, we show how this process is an efficient and more competitive alternative to other conformal coating mechanisms, such as dip coating or inkjet printing, for micro-engineered applications.


Serum miRNAs, a potential prognosis marker of loco-regionally advanced nasopharyngeal carcinoma patients treated with CCRT.

  • Zhimin Zhang‎ et al.
  • BMC cancer‎
  • 2020‎

Serum miRNA was once found as potential disease survival index,thus we investigated the role of miRNA in predicting prognosis in loco-regionally advanced NPC patients treated with CCRT.


Self-limiting electrospray deposition on polymer templates.

  • Lin Lei‎ et al.
  • Scientific reports‎
  • 2020‎

Electrospray deposition (ESD) applies a high voltage to liquids flowing through narrow capillaries to produce monodisperse generations of droplets down to hundreds of nanometers in diameter, each carrying a small amount of the delivered solute. This deposition method has been combined with insulated stencil masks for fabricating micropatterns by spraying solutions containing nanoparticles, polymers, or biomaterials. To optimize the fabrication process for micro-coatings, a self-limiting electrospray deposition (SLED) method has recently been developed. Here, we combine SLED with a pre-existing patterned polymer film to study SLED's fundamental behavior in a bilayer geometry. SLED has been observed when glassy insulating materials are sprayed onto conductive substrates, where a thickness-limited film forms as charge accumulates and repels the arrival of additional charged droplets. In this study, polystyrene (PS), Parylene C, and SU-8 thin films of varying thickness on silicon are utilized as insulated spraying substrates. Polyvinylpyrrolidone (PVP), a thermoplastic polymer is sprayed below its glass transition temperature (Tg) to investigate the SLED behavior on the pre-deposited insulating films. Furthermore, to examine the effects of in-plane confinement on the spray, a microhole array patterned onto the PS thin film by laser dewetting was sprayed with dyed PVP in the SLED mode. This was then extended to an unmasked electrode array showing that masked SLED and laser dewetting could be used to target microscale regions of conventionally-patterned electronics.


Vehicle Detection in Aerial Images Based on Region Convolutional Neural Networks and Hard Negative Example Mining.

  • Tianyu Tang‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2017‎

Detecting vehicles in aerial imagery plays an important role in a wide range of applications. The current vehicle detection methods are mostly based on sliding-window search and handcrafted or shallow-learning-based features, having limited description capability and heavy computational costs. Recently, due to the powerful feature representations, region convolutional neural networks (CNN) based detection methods have achieved state-of-the-art performance in computer vision, especially Faster R-CNN. However, directly using it for vehicle detection in aerial images has many limitations: (1) region proposal network (RPN) in Faster R-CNN has poor performance for accurately locating small-sized vehicles, due to the relatively coarse feature maps; and (2) the classifier after RPN cannot distinguish vehicles and complex backgrounds well. In this study, an improved detection method based on Faster R-CNN is proposed in order to accomplish the two challenges mentioned above. Firstly, to improve the recall, we employ a hyper region proposal network (HRPN) to extract vehicle-like targets with a combination of hierarchical feature maps. Then, we replace the classifier after RPN by a cascade of boosted classifiers to verify the candidate regions, aiming at reducing false detection by negative example mining. We evaluate our method on the Munich vehicle dataset and the collected vehicle dataset, with improvements in accuracy and robustness compared to existing methods.


Comparison between mono-tacrolimus and mono-glucocorticoid in the treatment of myasthenia gravis.

  • Zhirong Fan‎ et al.
  • Annals of clinical and translational neurology‎
  • 2023‎

Use of tacrolimus in mild to moderate myasthenia gravis (MG) is generally limited to glucocorticoid-refractory cases; the advantage of mono-tacrolimus over mono-glucocorticoids is unknown.


miR-146b-5p promotes duck Tembusu virus replication by targeting RPS14.

  • Juan Huang‎ et al.
  • Poultry science‎
  • 2023‎

Duck Tembusu virus (DTMUV), belonging to the Flaviviridae family, is a major virus that affects duck health in China. MicroRNAs (miRNAs) play an important role in viral replication. However, little is known about the function of miRNAs during DTMUV infection. Here, the host miR-146b-5p was found to regulate DTMUV replication. When DTMUV infected duck embryo fibroblasts (DEFs), the expression levels of miR-146b-5p increased significantly over time. Moreover, the viral RNA copies, E protein expression levels and virus titers were all upregulated when miR-146b-5p was overexpressed in DEFs. The opposite results were also observed upon knockdown of miR-146b-5p in DEFs. To explore the mechanism by which miR-146b-5p promoted DTMUV replication, mass spectrometry, and RNA pull-down assays were employed. Ribosomal protein S14 (RPS14), a component of 40S ribosomal proteins, was identified to interact with miR-146b-5p. In addition, the relative mRNA expression levels of RPS14 gene were negatively modulated by miR-146b-5p. Subsequently, it was found that overexpression of RPS14 could decrease the replication of DTMUV, and the reverse results were also detected by knockdown of RPS14. In conclusion, this study revealed that miR-146b-5p promoted DTMUV replication by targeting RPS14, which provides a new mechanism by which DTMUV evades host defenses and a new direction for further antiviral strategies development.


MicroRNA-206 regulates the secretion of inflammatory cytokines and MMP9 expression by targeting TIMP3 in Mycobacterium tuberculosis-infected THP-1 human macrophages.

  • Xiangdong Fu‎ et al.
  • Biochemical and biophysical research communications‎
  • 2016‎

Tuberculosis (TB) is a serious disease that is characterized by Mycobacterium tuberculosis (M.tb)-triggered immune system impairment and lung tissue damage shows limited treatment options. MicroRNAs (miRNAs) are regulators of gene expression that play critical roles in many human diseases, and can be up- or downregulated by M.tb infection in macrophage. Recently, tissue inhibitor of matrix metalloproteinase (TIMP) 3 has been found to play roles in regulating macrophage inflammation. Here, we found that TIMP3 expression was regulated by miR-206 in M.tb-infected THP-1 human macrophages. In THP-1 cells infected with M.tb, the miR-206 level was significantly upregulated and the expression of TIMP3 was markedly decreased when the secretion of inflammatory cytokines was increased. Inhibition of miR-206 markedly suppressed inflammatory cytokine secretion and upregulated the expression of TIMP3. In contrast, the upregulation of miR-206 promoted the matrix metalloproteinase (MMP) 9 levels and inhibited TIMP3 levels. Using a dual-luciferase reporter assay, a direct interaction between miR-206 and the 3'-untranslated region (UTR) of TIMP3 was confirmed. SiTIMP3, the small interfering RNA (siRNA) specific for TIMP3, significantly attenuated the suppressive effects of miR-206-inhibitor on inflammatory cytokine secretion and MMP9 expression. Our data suggest that miR-206 may function as an inflammatory regulator and drive the expression of MMP9 in M.tb-infected THP-1 cells by targeting TIMP3, indicating that miR-206 is a potential therapeutic target for patients with TB.


Attenuation of mouse hepatitis virus by deletion of the LLRKxGxKG region of Nsp1.

  • Lin Lei‎ et al.
  • PloS one‎
  • 2013‎

Coronaviruses are a family of large positive-sense RNA viruses that are responsible for a wide range of important veterinary and human diseases. Nsp1 has been shown to have an important role in the pathogenetic mechanisms of coronaviruses in vivo. To assess the function of a relatively conserved domain (LLRKxGxKG) of MHV nsp1, a mutant virus, MHV-nsp1-27D, with a 27 nts (LLRKxGxKG) deletion in nsp1, was constructed using a reverse genetic system with a vaccinia virus vector. The mutant virus had similar growth kinetics to MHV-A59 wild-type virus in 17CI-1 cells, but was highly attenuated in vivo. Moreover, the mutant virus completely protected C57BL/6 mice from a lethal MHV-A59 challenge. To further analyze the mechanism of the attenuation of the mutant virus, changes in reporter gene expression were measured in nsp1- or nsp1-27D-expressing cells; the results showed that nsp1 inhibited reporter gene expression controlled by different promoters, but that this inhibition was reduced for nsp1-27D. The research in vivo and in vitro suggests that the LLRKxGxKG region of nsp1 may play an important role in this process.


Genome-wide analyses of multiple obesity-related cytokines and hormones informs biology of cardiometabolic traits.

  • Karlijn A C Meeks‎ et al.
  • Genome medicine‎
  • 2021‎

A complex set of perturbations occur in cytokines and hormones in the etiopathogenesis of obesity and related cardiometabolic conditions such as type 2 diabetes (T2D). Evidence for the genetic regulation of these cytokines and hormones is limited, particularly in African-ancestry populations. In order to improve our understanding of the biology of cardiometabolic traits, we investigated the genetic architecture of a large panel of obesity- related cytokines and hormones among Africans with replication analyses in African Americans.


Nuciferine protects against high-fat diet-induced hepatic steatosis and insulin resistance via activating TFEB-mediated autophagy-lysosomal pathway.

  • Xiliang Du‎ et al.
  • Acta pharmaceutica Sinica. B‎
  • 2022‎

Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis and insulin resistance and there are currently no approved drugs for its treatment. Hyperactivation of mTOR complex 1 (mTORC1) and subsequent impairment of the transcription factor EB (TFEB)-mediated autophagy-lysosomal pathway (ALP) are implicated in the development of NAFLD. Accordingly, agents that augment hepatic TFEB transcriptional activity may have therapeutic potential against NAFLD. The objective of this study was to investigate the effects of nuciferine, a major active component from lotus leaf, on NAFLD and its underlying mechanism of action. Here we show that nuciferine activated ALP and alleviated steatosis, insulin resistance in the livers of NAFLD mice and palmitic acid-challenged hepatocytes in a TFEB-dependent manner. Mechanistic investigation revealed that nuciferine interacts with the Ragulator subunit hepatitis B X-interacting protein and impairs the interaction of the Ragulator complex with Rag GTPases, thereby suppressing lysosomal localization and activity of mTORC1, which activates TFEB-mediated ALP and further ameliorates hepatic steatosis and insulin resistance. Our present results indicate that nuciferine may be a potential agent for treating NAFLD and that regulation of the mTORC1-TFEB-ALP axis could represent a novel pharmacological strategy to combat NAFLD.


Dietary Flavonoids and the Risk of Colorectal Cancer: An Updated Meta-Analysis of Epidemiological Studies.

  • Hui Chang‎ et al.
  • Nutrients‎
  • 2018‎

Aim: The aim of this study was to perform an up-to-date meta-analysis of the association between the intake of dietary flavonoids and the risk of colorectal cancer. Methods: The PubMed and EMBASE databases were searched to identify eligible studies. The risk of colorectal cancer for the highest versus the lowest categories of flavonoids intake were assessed. Results: A total of 12 studies (5 cohort and 7 case-control studies) involving 17,481 cases and 740,859 controls were eligible for meta-analysis. High intake of dietary flavonols, flavones and anthocyanidins may decrease the risk of colorectal cancer; the pooled odds ratio (OR) for the highest intake compared with the lowest was 0.70 (0.54⁻0.90), 0.79 (0.83⁻0.99) and 0.78 (0.64⁻0.95), respectively. No association between the intake of total flavonoids, flavanones or flavan-3-ols and the risk of colorectal cancer was observed. Furthermore, the data showed that high intake of flavonols may decrease the risk of colon cancer [0.80 (0.68⁻0.94)] but not rectal cancer [0.93 (0.74⁻1.18)], while on the contrary, the intake of flavones may decrease rectal cancer risk [0.82 (0.70⁻0.97)] but not colon cancer risk [0.88 (0.69⁻1.13)]. Conclusions: The present study suggested that high intake of flavonols (such as quercetin) may reduce the risk of colon cancer, and high intake of flavones (such as apigenin) may reduce the risk of rectal cancer.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: