Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 39 papers

Local 3D matrix confinement determines division axis through cell shape.

  • Lijuan He‎ et al.
  • Oncotarget‎
  • 2016‎

How the division axis is determined in mammalian cells embedded in three-dimensional (3D) matrices remains elusive, despite that many types of cells divide in 3D environments. Cells on two-dimensional (2D) substrates typically round up completely to divide. Here, we show that in 3D collagen matrices, mammalian cells such as HT1080 human fibrosarcoma and MDA-MB-231 breast cancer cells exhibit division modes distinct from their Counterparts on 2D substrates, with a markedly higher fraction of cells remaining highly elongated through mitosis in 3D matrices. The long axis of elongated mitotic cells accurately predicts the division axis, independently of matrix density and cell-matrix interactions. This 3D-specific elongated division mode is determined by the local confinement produced by the matrix and the ability of cells to protrude and locally remodel the matrix via β1 integrin. Elongated division is readily recapitulated using collagen-coated microfabricated channels. Cells depleted of β1 integrin still divide in the elongated mode in microchannels, suggesting that 3D confinement is sufficient to induce the elongated cell-division phenotype.


Interaction of exposure concentration and duration in determining the apoptosis of testis in rats after cigarette smoke inhalation.

  • Lijuan He‎ et al.
  • Saudi journal of biological sciences‎
  • 2016‎

The effects of differences in smoke concentration and exposure duration in Sprague Dawley rats to determine variation in type and severity of the testis apoptosis were evaluated. The daily dosages were 10, 20 and 30 non-filter cigarettes for a period of 2, 4, 6, 8 and 12 weeks. Mainstream smoke exposure suppressed body weight gain in all regimens. A dose-related increase in plasma nicotine concentration was observed in smoke-exposed groups for 4, 6, 8 and 12 week regimens. Histopathological examination of the exposed groups showed disturbances in the stages of spermatogenesis, tubules atrophying and these appeared to be dose-related. Cytoplasmic caspase-3 immunostaining was detected both in Sertoli cells and germ cells in smoke-exposure groups. An increase in TUNEL-positive cells of testicular cells was observed after 6 weeks of cigarette exposure. The results indicate that cigarette exposure concentration and duration have interaction effect to induce apoptosis in the rat testes.


Indehiscent sporangia enable the accumulation of local fern diversity at the Qinghai-Tibetan Plateau.

  • Li Wang‎ et al.
  • BMC evolutionary biology‎
  • 2012‎

Indehiscent sporangia are reported for only a few of derived leptosporangiate ferns. Their evolution has been likely caused by conditions in which promotion of self-fertilization is an evolutionary advantageous strategy such as the colonization of isolated regions and responds to stressful habitat conditions. The Lepisorus clathratus complex provides the opportunity to test this hypothesis because these derived ferns include specimens with regular dehiscent and irregular indehiscent sporangia. The latter occurs preferably in well-defined regions in the Himalaya. Previous studies have shown evidence for multiple origins of indehiscent sporangia and the persistence of populations with indehiscent sporangia at extreme altitudinal ranges of the Qinghai-Tibetan Plateau (QTP).


Autophagy Induced by Oxygen-Glucose Deprivation Mediates the Injury to the Neurovascular Unit.

  • Xinyang Zhang‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2019‎

BACKGROUND Autophagy is characterized by the degradation of cellular components in autophagosomes. It plays a significant role in cerebral ischemic injury and has a complex functional connection with apoptosis. The neurovascular unit (NVU) is a structural and functional unit of the nervous system presented as a therapeutic target of stroke. This study aimed to investigate the effect of autophagy induced by ischemic damage on NVUs. MATERIAL AND METHODS SH-SY5Y cells, C6 cells, and rat brain microvascular endothelial cells were cultured with oxygen-glucose deprivation (OGD) exposure for different time durations, and 3-methyladenine (3-MA) was added as an autophagy inhibitor. In all 3 cell lines, lactate dehydrogenase (LDH) release was measured. Furthermore, apoptosis was detected using Annexin V-fluorescein isothiocyanate/propidium iodide labeling and immunofluorescence staining. Autophagosomes were observed through AO/MDC (acridine orange/monodansycadaverine) double staining. LC3-II expression levels were evaluated by western blot analysis. RESULTS In the OGD groups of 3 cell lines, LDH leakage, and apoptotic rates were obviously increased. Remarkable increase in LC3-II expression was found in the OGD groups of SH-SY5Y cells and C6 cells. However, 3-MA decreased the LC3-II expression to varying degrees. CONCLUSIONS OGD could induce the over-activation of autophagy and augment the apoptotic activity in neurons and glial cells of NVUs.


Clinical-grade human umbilical cord-derived mesenchymal stem cells reverse cognitive aging via improving synaptic plasticity and endogenous neurogenesis.

  • Ning Cao‎ et al.
  • Cell death & disease‎
  • 2017‎

Cognitive aging is a leading public health concern with the increasing aging population, but there is still lack of specific interventions directed against it. Recent studies have shown that cognitive function is intimately affected by systemic milieu in aging brain, and improvement of systemic environment in aging brain may be a promising approach for rejuvenating cognitive aging. Here, we sought to study the intervention effects of clinical-grade human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) on cognitive aging in a murine model of aging. The conventional aging model in mice induced by d-galactose (d-gal) was employed here. Mice received once every two weeks intraperitoneal administration of hUC-MSCs. After 3 months of systematical regulation of hUC-MSCs, the hippocampal-dependent learning and memory ability was effectively improved in aged mice, and the synaptic plasticity was remarkably enhanced in CA1 area of the aged hippocampus; moreover, the neurobiological substrates that could impact on the function of hippocampal circuits were recovered in the aged hippocampus reflecting in: dendritic spine density enhanced, neural sheath and cytoskeleton restored, and postsynaptic density area increased. In addition, the activation of the endogenic neurogenesis which is beneficial to stabilize the neural network in hippocampus was observed after hUC-MSCs transplantation. Furthermore, we demonstrated that beneficial effects of systematical regulation of hUC-MSCs could be mediated by activation of mitogen-activated protein kinase (MAPK)-ERK-CREB signaling pathway in the aged hippocampus. Our study provides the first evidence that hUC-MSCs, which have the capacity of systematically regulating the aging brain, may be a potential intervention for cognitive aging.


Liver Sinusoidal Endothelial Cells Promote the Expansion of Human Cord Blood Hematopoietic Stem and Progenitor Cells.

  • Huilin Li‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Cord blood (CB) is an attractive source of hematopoietic stem cells (HSCs) for hematopoietic cell transplantation. However, its application remains limited due to the low number of HSCs/progenitors in a single CB unit and its notoriously difficulty in expanding ex vivo. Here, we demonstrated that the human fetal liver sinusoidal endothelial cells engineered to constitutively express the adenoviral E4orf1 gene (hFLSECs-E4orf1) is capable of efficient expansion ex vivo for human CB hematopoietic stem and progenitor cells (HSPCs). Coculture of CD34+ hCB cells with hFLSECs-E4orf1 resulted in generation of substantially more total nucleated cells, CD34+CD38- and CD34+ CD38-CD90+ HSPCs in comparison with that of cytokines alone after 14 days. The multilineage differentiation potential of the expanded hematopoietic cells in coculture condition, as assessed by in vitro colony formation, was also significantly heightened. The CD34+ hCB cells amplified on hFLSECs-E4orf1 were capable of engraftment in vivo. Furthermore, hFLSECs-E4orf1 highly expressed hematopoiesis related growth factor and Notch receptors. Accordingly, the CD34+ hCB cells amplified on hFLSECs-E4orf1 exhibited Notch signaling activation. Taken together, our findings indicated that FLSECs may potentially be the crucial component of the microenvironment to support recapitulation of embryonic HSC amplification in vitro and allow identification of new growth factors responsible for collective regulation of hematopoiesis.


Oxidative stress-mediated hepatotoxicity in rats induced by ethanol extracts of different parts of Chloranthus serratus.

  • Shuping Sun‎ et al.
  • Pharmaceutical biology‎
  • 2020‎

Chloranthus serratus (Thunb.) Roem. et Schult. (Chloranthaceae) is an herb widely used as a folk medicine treating inflammatory diseases, although it is toxic.


Asparagine Synthetase and Filamin A Have Different Roles in Ovarian Cancer.

  • Liang Zeng‎ et al.
  • Frontiers in oncology‎
  • 2019‎

Early-stage ovarian serous carcinoma is usually difficult to detect in clinical practice. The profiling of protein expression in high-grade serous carcinoma (HGSC) and low-grade serous carcinoma (LGSC) would provide important information for diagnoses and chemotherapy. Here, we performed proteomic profiling of specimens from 13 HGSC and 7 LGSC patients by iTRAQ. A total of 323 proteins that were differentially expressed were identified. After immunohistochemical confirmation of expressed proteins in 166 clinical tissues, asparagine synthetase (ASNS) and filamin A (FLNA) were selected for further functional study. Cisplatin-sensitive (CS; ASNShigh and FLNAlow) and cisplatin-resistant (CR; ASNSlow and FLNAhigh) SKOV3 and OVCAR3 ovarian cancer cell lines were used for subsequent in vitro and in vivo experiments. Notably, ASNS overexpression (ASNS+) or FLNA knockdown (shFLNA) enabled cisplatin-induced apoptosis and autophagy in CR cells. However, ASNS+ and shFLNA promoted and attenuated tumor growth, respectively. In CS cells, ASNS knockdown (shASNS) attenuated clonogenicity, cell proliferation, and the epithelial-mesenchymal transition, whereas FLNA overexpression (FLNA+) protected cells from cisplatin. In vivo, cisplatin resistance was attenuated in mice xenografted with ASNS+, shFLNA, or ASNS+-shFLNA CR cells, whereas xenografts of shASNS or FLNA+ CS cells exhibited resistance to cisplatin. Clinically, all HGSC patients (83/83) responded to cisplatin, while 6 in 41 LGSC patients exhibited cisplatin resistance. These findings identify ASNS and FLNA as distinct biomarkers for HGSC and LGSC, which may have potential value in the prognosis and clinical treatment of serous carcinoma.


Integration-free reprogramming of human umbilical arterial endothelial cells into induced pluripotent stem cells IHSTMi001-A.

  • Huilin Li‎ et al.
  • Stem cell research‎
  • 2018‎

Primary arterial endothelial cell (AEC) is an attractive source of tissue-engineered blood vessels for therapeutic transplantation in vascular disease. However, scarcity of donor tissue, inability of proliferation and undergo de-differentiation in culture remain major obstacles. We derived a stable induced pluripotent stem cell (iPSC) line possessed all the characteristics of pluripotent state from human umbilical arterial endothelial cells by transduction of four human transcription factors (Oct4, Sox2, Klf4, and c-Myc) using sendai virus vectors. It will likely facilitate to lineage differentiate and generate sufficient AECs for clinical use in cardiovascular disease based on epigenetic memory of the tissue of origin.


A reference-grade wild soybean genome.

  • Min Xie‎ et al.
  • Nature communications‎
  • 2019‎

Efficient crop improvement depends on the application of accurate genetic information contained in diverse germplasm resources. Here we report a reference-grade genome of wild soybean accession W05, with a final assembled genome size of 1013.2 Mb and a contig N50 of 3.3 Mb. The analytical power of the W05 genome is demonstrated by several examples. First, we identify an inversion at the locus determining seed coat color during domestication. Second, a translocation event between chromosomes 11 and 13 of some genotypes is shown to interfere with the assignment of QTLs. Third, we find a region containing copy number variations of the Kunitz trypsin inhibitor (KTI) genes. Such findings illustrate the power of this assembly in the analysis of large structural variations in soybean germplasm collections. The wild soybean genome assembly has wide applications in comparative genomic and evolutionary studies, as well as in crop breeding and improvement programs.


Generation of SHMT2 knockout human embryonic stem cell line (WAe009-A-67) using CRISPR/Cas9 technique.

  • Jisheng Li‎ et al.
  • Stem cell research‎
  • 2021‎

Serine hydroxymethyltransferase 2 (SHMT2), a catalytic enzyme playing an important role in aerobic cellular respiration and mitochondrial metabolism, might be pivotal in self-renewal and differentiation of human pluripotent stem cells. Herein, we used the CRISPR/Cas9 editing system to construct a homozygous SHMT2 knockout (SHMT2-KO) human embryonic stem cell (hESC) line, exhibiting a normal karyotype, colony morphology, and high expression levels of pluripotent proteins. Furthermore, SHMT2 knockout did not impact the self-renewal ability or differentiation potential into three germ layers of hESCs. Accordingly, this cell line provides a valuable model for further assessing SHMT2 functions in human embryonic development.


Synergetic delivery of artesunate and isosorbide 5-mononitrate with reduction-sensitive polymer nanoparticles for ovarian cancer chemotherapy.

  • Guang Li‎ et al.
  • Journal of nanobiotechnology‎
  • 2022‎

Ovarian cancer is a highly fatal gynecologic malignancy worldwide. Chemotherapy remains the primary modality both for primary and maintenance treatments of ovarian cancer. However, the progress in developing chemotherapeutic agents for ovarian cancer has been slow in the past 20 years. Thus, new and effective chemotherapeutic drugs are urgently needed for ovarian cancer treatment. A reduction-responsive synergetic delivery strategy (PSSP@ART-ISMN) with co-delivery of artesunate and isosorbide 5-mononitrate was investigated in this research study. PSSP@ART-ISMN had various effects on tumor cells, such as (i) inducing the production of reactive oxygen species (ROS), which contributes to mitochondrial damage; (ii) providing nitric oxide and ROS for the tumor cells, which further react to generate highly toxic reactive nitrogen species (RNS) and cause DNA damage; and (iii) arresting cell cycle at the G0/G1 phase and inducing apoptosis. PSSP@ART-ISMN also demonstrated excellent antitumor activity with good biocompatibility in vivo. Taken together, the results of this work provide a potential delivery strategy for chemotherapy in ovarian cancer.


Nephropathy 1st inhibits renal fibrosis by activating the PPARγ signaling pathway.

  • Linjie Mu‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

Renal fibrosis is a manifestation of kidney injury. Nephropathy 1st is a traditional Chinese herbal medicine that has been used as a therapy for kidney disease, but the underlying mechanisms remain elusive. The aim of this study was to investigate the role and underlying mechanisms of Nephropathy 1st on the progression of kidney disease. In the present study, unilateral ureteral obstruction was performed to establish the renal fibrosis rat model. By hematoxylin-eosin staining and immunohistochemical staining analysis, the severity of renal fibrosis was evaluated in vivo. Serum creatinine (CREA) and urea nitrogen (BUN) were measured by ELISA. The expression levels of Col-I, FN, PPARγ, and Klotho were measured by Western blot in rat NRK-49F cells and in fibrotic rats. GW9662 was used to inhibit PPARγ signaling. Metabonomic analysis showed metabolic differences among groups. Nephropathy 1st administration alleviated the progression of rat renal fibrosis and reduced serum creatinine (Scr) and BUN levels. Mechanistically, Nephropathy 1st promoted the expression of PPARγ and thus activated PPARγ signaling, thereby reducing the pro-fibrotic phenotypes of fibroblasts. The therapeutic effect of Nephropathy 1st was abrogated by the PPARγ inhibitor GW9662. Moreover, Nephropathy 1st normalized the dysregulated lipid metabolism in renal fibrosis rats. In conclusion, Nephropathy 1st alleviates renal fibrosis development in a PPARγ-dependent manner.


Clinical-grade human umbilical cord-derived mesenchymal stem cells improved skeletal muscle dysfunction in age-associated sarcopenia mice.

  • Chao Wang‎ et al.
  • Cell death & disease‎
  • 2023‎

With the expansion of the aging population, age-associated sarcopenia (AAS) has become a severe clinical disease of the elderly and a key challenge for healthy aging. Regrettably, no approved therapies currently exist for treating AAS. In this study, clinical-grade human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) were administrated to two classic mouse models (SAMP8 mice and D-galactose-induced aging mice), and their effects on skeletal muscle mass and function were investigated by behavioral tests, immunostaining, and western blotting. Core data results showed that hUC-MSCs significantly restored skeletal muscle strength and performance in both mouse models via mechanisms including raising the expression of crucial extracellular matrix proteins, activating satellite cells, enhancing autophagy, and impeding cellular aging. For the first time, the study comprehensively evaluates and demonstrates the preclinical efficacy of clinical-grade hUC-MSCs for AAS in two mouse models, which not only provides a novel model for AAS, but also highlights a promising strategy to improve and treat AAS and other age-associated muscle diseases. This study comprehensively evaluates the preclinical efficacy of clinical-grade hUC-MSCs in treating age-associated sarcopenia (AAS), and demonstrates that hUC-MSCs restore skeletal muscle strength and performance in two AAS mouse models via raising the expression of extracellular matrix proteins, activating satellite cells, enhancing autophagy, and impeding cellular aging, which highlights a promising strategy for AAS and other age-associated muscle diseases.


Effect of the G375C and G346E achondroplasia mutations on FGFR3 activation.

  • Lijuan He‎ et al.
  • PloS one‎
  • 2012‎

Two mutations in FGFR3, G380R and G375C are known to cause achondroplasia, the most common form of human dwarfism. The G380R mutation accounts for 98% of the achondroplasia cases, and thus has been studied extensively. Here we study the effect of the G375C mutation on the phosphorylation and the cross-linking propensity of full-length FGFR3 in HEK 293 cells, and we compare the results to previously published results for the G380R mutant. We observe identical behavior of the two achondroplasia mutants in these experiments, a finding which supports a direct link between the severity of dwarfism phenotypes and the level and mechanism of FGFR3 over-activation. The mutations do not increase the cross-linking propensity of FGFR3, contrary to previous expectations that the achondroplasia mutations stabilize the FGFR3 dimers. Instead, the phosphorylation efficiency within un-liganded FGFR3 dimers is increased, and this increase is likely the underlying cause for pathogenesis in achondroplasia. We further investigate the G346E mutation, which has been reported to cause achondroplasia in one case. We find that this mutation does not increase FGFR3 phosphorylation and decreases FGFR3 cross-linking propensity, a finding which raises questions whether this mutation is indeed a genetic cause for human dwarfism.


Arterial endothelium creates a permissive niche for expansion of human cord blood hematopoietic stem and progenitor cells.

  • Huilin Li‎ et al.
  • Stem cell research & therapy‎
  • 2020‎

Although cord blood (CB) offers promise for treatment of patients with high-risk hematological malignancies and immune disorders, the limited numbers of hematopoietic stem cell (HSC)/progenitor cell in a CB unit and straitened circumstances in expanding ex vivo make it quite challenging to develop the successful cell therapies.


Thrombopoietin enhances hematopoietic stem and progenitor cell homing by impeding matrix metalloproteinase 9 expression.

  • Yiming Liu‎ et al.
  • Stem cells translational medicine‎
  • 2020‎

We reported a novel function of recombinant human thrombopoietin (TPO) in increasing hematopoietic stem and progenitor cell (HSPC) homing to the bone marrow (BM). Single doses of TPO treatment to the recipients immediately after BM transplantation showed significantly improved homing of HSPCs to the BM, which subsequently resulted in enhanced short- and long-term engraftment of HSPCs in mice. We found that TPO could downregulate the expression and secretion of matrix metalloproteinase 9 in BM cells. As a result, SDF-1α level was increased in the BM niche. Blocking the interaction of SDF-1α and CXCR4 on HSPCs by using AMD3100 could significantly reverse the TPO-enhanced HSPC homing effect. More importantly, a single dose of TPO remarkably promoted human HSPC homing and subsequent engraftment to the BM of nonobese diabetic/severe combined immunodeficiency mice. We then performed a clinical trial to evaluate the effect of TPO treatment in patients receiving haploidentical BM and mobilized peripheral blood transplantation. Surprisingly, single doses of TPO treatment to patients followed by hematopoietic stem cell transplantation significantly improved platelet engraftment in the cohort of patients with severe aplastic anemia (SAA). The mean volume of platelet and red blood cell transfusion was remarkably reduced in the cohort of patients with SAA or hematological malignancies receiving TPO treatment. Thus, our data provide a simple, feasible, and efficient approach to improve clinical outcomes in patients with allogenic hematopoietic stem cell transplantation. The clinical trial was registered in the Chinese Clinical Trial Registry website (www.chictr.org.cn) as ChiCTR-OIN-1701083.


An Active Fraction of Trillium tschonoskii Promotes the Regeneration of Intestinal Epithelial Cells After Irradiation.

  • Feiling Song‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2021‎

Despite significant scientific advances toward the development of safe and effective radiation countermeasures, no drug has been approved for use in the clinic for prevention or treatment of radiation-induced acute gastrointestinal syndrome (AGS). Thus, there is an urgent need to develop potential drugs to accelerate the repair of injured intestinal tissue. In this study, we investigated that whether some fractions of Traditional Chinese Medicine (TCM) have the ability to regulate intestinal crypt cell proliferation and promotes crypt regeneration after radiation. By screening the different supplements from a TCM library, we found that an active fraction of the rhizomes of Trillium tschonoskii Maxim (TT), TT-2, strongly increased the colony-forming ability of irradiated rat intestinal epithelial cell line 6 (IEC-6) cells. TT-2 significantly promoted the proliferation and inhibited the apoptosis of irradiated IEC-6 cells. Furthermore, in a small intestinal organoid radiation model, TT-2 promoted irradiated intestinal organoid growth and increased Lgr5+ intestinal stem cell (ICS) numbers. More importantly, the oral administration of TT-2 remarkably enhanced intestinal crypt cell proliferation and promoted the repair of the intestinal epithelium of mice after abdominal irradiation (ABI). Mechanistically, TT-2 remarkably activated the expression of ICS-associated and proliferation-promoting genes and inhibited apoptosis-related gene expression. Our data indicate that active fraction of TT can be developed into a potential oral drug for improving the regeneration and repair of intestinal epithelia that have intestinal radiation damage.


Direct chemical reprogramming of human cord blood erythroblasts to induced megakaryocytes that produce platelets.

  • Jinhua Qin‎ et al.
  • Cell stem cell‎
  • 2022‎

Reprogramming somatic cells into megakaryocytes (MKs) would provide a promising source of platelets. However, using a pharmacological approach to generate human MKs from somatic cells remains an unmet challenge. Here, we report that a combination of four small molecules (4M) successfully converted human cord blood erythroblasts (EBs) into induced MKs (iMKs). The iMKs could produce proplatelets and release functional platelets, functionally resembling natural MKs. Reprogramming trajectory analysis revealed an efficient cell fate conversion of EBs into iMKs by 4M via the intermediate state of bipotent precursors. 4M induced chromatin remodeling and drove the transition of transcription factor (TF) regulatory network from key erythroid TFs to essential TFs for megakaryopoiesis, including FLI1 and MEIS1. These results demonstrate that the chemical reprogramming of cord blood EBs into iMKs provides a simple and efficient approach to generate MKs and platelets for clinical applications.


A nanocomposite competent to overcome cascade drug resistance in ovarian cancer via mitochondria dysfunction and NO gas synergistic therapy.

  • Min Zhong‎ et al.
  • Asian journal of pharmaceutical sciences‎
  • 2023‎

Ovarian cancer (OC) is one of the most common and recurring malignancies in gynecology. Patients with relapsed OC always develop "cascade drug resistance" (CDR) under repeated chemotherapy, leading to subsequent failure of chemotherapy. To overcome this challenge, amphiphiles (P1) carrying a nitric oxide (NO) donor (Isosorbide 5-mononitrate, ISMN) and high-density disulfide are synthesized for encapsulating mitochondria-targeted tetravalent platinum prodrug (TPt) to construct a nanocomposite (INP@TPt). Mechanism studies indicated that INP@TPt significantly inhibited drug-resistant cells by increasing cellular uptake and mitochondrial accumulation of platinum, depleting glutathione, and preventing apoptosis escape through generating highly toxic peroxynitrite anion (ONOO-). To better replicate the microenvironmental and histological characteristics of the drug resistant primary tumor, an OC patient-derived tumor xenograft (PDXOC) model in BALB/c nude mice was established. INP@TPt showed the best therapeutic effects in the PDXOC model. The corresponding tumor tissues contained high ONOO- levels, which were attributed to the simultaneous release of O2•- and NO in tumor tissues. Taken together, INP@TPt-based systematic strategy showed considerable potential and satisfactory biocompatibility in overcoming platinum CDR, providing practical applications for ovarian therapy.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: