Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Synthesis of a GlcNAcylated arginine building block for the solid phase synthesis of death domain glycopeptide fragments.

  • Siyao Wang‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2017‎

Herein we describe the synthesis of glycopeptide fragments from the death domains of TRADD and FADD bearing the recently discovered Nω-GlcNAc-β-arginine post-translational modification. TRADD and FADD glycopeptides were accessed through the use of a suitably protected synthetic glycosylamino acid 'cassette' that could be directly incorporated into conventional solid phase peptide synthesis (SPPS) protocols.


Late-stage modification of peptides and proteins at cysteine with diaryliodonium salts.

  • Stephen A Byrne‎ et al.
  • Chemical science‎
  • 2021‎

The modification of peptides and proteins has emerged as a powerful means to efficiently prepare high value bioconjugates for a range of applications in chemical biology and for the development of next-generation therapeutics. Herein, we report a novel method for the chemoselective late-stage modification of peptides and proteins at cysteine in aqueous buffer with suitably functionalised diaryliodonium salts, furnishing stable thioether-linked synthetic conjugates. The power of this new platform is showcased through the late-stage modification of the affibody zEGFR and the histone protein H2A.


Position-specific N- and O-glycosylation of the reactive center loop impacts neutrophil elastase-mediated proteolysis of corticosteroid-binding globulin.

  • Anastasia Chernykh‎ et al.
  • The Journal of biological chemistry‎
  • 2024‎

Corticosteroid-binding globulin (CBG) delivers anti-inflammatory cortisol to inflamed tissues through proteolysis of an exposed reactive center loop (RCL) by neutrophil elastase (NE). We previously demonstrated that RCL-localized Asn347-linked N-glycans impact NE proteolysis, but a comprehensive structure-function characterization of the RCL glycosylation is still required to better understand CBG glycobiology. Herein, we first performed RCL-centric glycoprofiling of serum-derived CBG to elucidate the Asn347-glycans and then used molecular dynamics simulations to study their impact on NE proteolysis. Importantly, we also identified O-glycosylation (di/sialyl T) across four RCL sites (Thr338/Thr342/Thr345/Ser350) of serum CBG close to the NE-targeted Val344-Thr345 cleavage site. A restricted N- and O-glycan co-occurrence pattern on the RCL involving exclusively Asn347 and Thr338 glycosylation was experimentally observed and supported in silico by modeling of a CBG-GalNAc-transferase (GalNAc-T) complex with various RCL glycans. GalNAc-T2 and GalNAc-T3 abundantly expressed by liver and gall bladder, respectively, showed in vitro a capacity to transfer GalNAc (Tn) to multiple RCL sites suggesting their involvement in RCL O-glycosylation. Recombinant CBG was then used to determine roles of RCL O-glycosylation through longitudinal NE-centric proteolysis experiments, which demonstrated that both sialoglycans (disialyl T) and asialoglycans (T) decorating Thr345 inhibit NE proteolysis. Synthetic RCL O-glycopeptides expanded on these findings by showing that Thr345-Tn and Thr342-Tn confer strong and moderate protection against NE cleavage, respectively. Molecular dynamics substantiated that short Thr345-linked O-glycans abrogate NE interactions. In conclusion, we report on biologically relevant CBG RCL glycosylation events, which improve our understanding of mechanisms governing cortisol delivery to inflamed tissues.


A pain-causing and paralytic ant venom glycopeptide.

  • Samuel D Robinson‎ et al.
  • iScience‎
  • 2021‎

Ants (Hymenoptera: Formicidae) are familiar inhabitants of most terrestrial environments. Although we are aware of the ability of many species to sting, knowledge of ant venom chemistry remains limited. Herein, we describe the discovery and characterization of an O-linked glycopeptide (Mg7a) as a major component of the venom of the ant Myrmecia gulosa. Electron transfer dissociation and higher-energy collisional dissociation tandem mass spectrometry were used to localize three α-N-acetylgalactosaminyl residues (α-GalNAc) present on the 63-residue peptide. To allow for functional studies, we synthesized the full-length glycosylated peptide via solid-phase peptide synthesis, combined with diselenide-selenoester ligation-deselenization chemistry. We show that Mg7a is paralytic and lethal to insects, and triggers pain behavior and inflammation in mammals, which it achieves through a membrane-targeting mode of action. Deglycosylation of Mg7a renders it insoluble in aqueous solution, suggesting a key solubilizing role of the O-glycans.


The CLAVATA receptor FASCIATED EAR2 responds to distinct CLE peptides by signaling through two downstream effectors.

  • Byoung Il Je‎ et al.
  • eLife‎
  • 2018‎

Meristems contain groups of indeterminate stem cells, which are maintained by a feedback loop between CLAVATA (CLV) and WUSCHEL (WUS) signaling. CLV signaling involves the secretion of the CLV3 peptide and its perception by a number of Leucine-Rich-Repeat (LRR) receptors, including the receptor-like kinase CLV1 and the receptor-like protein CLV2 coupled with the CORYNE (CRN) pseudokinase. CLV2, and its maize ortholog FASCIATED EAR2 (FEA2) appear to function in signaling by CLV3 and several related CLV3/EMBRYO-SURROUNDING REGION (CLE) peptide ligands. Nevertheless, how signaling specificity is achieved remains unknown. Here we show that FEA2 transmits signaling from two distinct CLE peptides, the maize CLV3 ortholog ZmCLE7 and ZmFON2-LIKE CLE PROTEIN1 (ZmFCP1) through two different candidate downstream effectors, the alpha subunit of the maize heterotrimeric G protein COMPACT PLANT2 (CT2), and ZmCRN. Our data provide a novel framework to understand how diverse signaling peptides can activate different downstream pathways through common receptor proteins.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: