Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Maternal diets trigger sex-specific divergent trajectories of gene expression and epigenetic systems in mouse placenta.

  • Anne Gabory‎ et al.
  • PloS one‎
  • 2012‎

Males and females responses to gestational overnutrition set the stage for subsequent sex-specific differences in adult onset non communicable diseases. Placenta, as a widely recognized programming agent, contibutes to the underlying processes. According to our previous findings, a high-fat diet during gestation triggers sex-specific epigenetic alterations within CpG and throughout the genome, together with the deregulation of clusters of imprinted genes. We further investigated the impact of diet and sex on placental histology, transcriptomic and epigenetic signatures in mice. Both basal gene expression and response to maternal high-fat diet were sexually dimorphic in whole placentas. Numerous genes showed sexually dimorphic expression, but only 11 genes regardless of the diet. In line with the key role of genes belonging to the sex chromosomes, 3 of these genes were Y-specific and 3 were X-specific. Amongst all the genes that were differentially expressed under a high-fat diet, only 16 genes were consistently affected in both males and females. The differences were not only quantitative but remarkably qualitative. The biological functions and networks of genes dysregulated differed markedly between the sexes. Seven genes of the epigenetic machinery were dysregulated, due to effects of diet, sex or both, including the Y- and X-linked histone demethylase paralogues Kdm5c and Kdm5d, which could mark differently male and female epigenomes. The DNA methyltransferase cofactor Dnmt3l gene expression was affected, reminiscent of our previous observation of changes in global DNA methylation. Overall, this striking sexual dimorphism of programming trajectories impose a considerable revision of the current dietary interventions protocols.


A genetic screen identifies BEND3 as a regulator of bivalent gene expression and global DNA methylation.

  • Lounis Yakhou‎ et al.
  • Nucleic acids research‎
  • 2023‎

Epigenetic mechanisms are essential to establish and safeguard cellular identities in mammals. They dynamically regulate the expression of genes, transposable elements and higher-order chromatin structures. Consequently, these chromatin marks are indispensable for mammalian development and alterations often lead to disease, such as cancer. Bivalent promoters are especially important during differentiation and development. Here we used a genetic screen to identify new regulators of a bivalent repressed gene. We identify BEND3 as a regulator of hundreds of bivalent promoters, some of which it represses, and some of which it activates. We show that BEND3 is recruited to a CpG-containg consensus site that is present in multiple copies in many bivalent promoters. Besides having direct effect on the promoters it binds, the loss of BEND3 leads to genome-wide gains of DNA methylation, which are especially marked at regions normally protected by the TET enzymes. DNA hydroxymethylation is reduced in Bend3 mutant cells, possibly as consequence of altered gene expression leading to diminished alpha-ketoglutarate production, thus lowering TET activity. Our results clarify the direct and indirect roles of an important chromatin regulator, BEND3, and, more broadly, they shed light on the regulation of bivalent promoters.


E4F1 and ZNF148 are transcriptional activators of the -57A > C and wild-type TERT promoter.

  • Boon Haow Chua‎ et al.
  • Genome research‎
  • 2023‎

Point mutations within the TERT promoter are the most recurrent somatic noncoding mutations identified across different cancer types, including glioblastoma, melanoma, hepatocellular carcinoma, and bladder cancer. They are most abundant at -146C > T and -124C > T, and rarer at -57A > C, with the latter originally described as a familial case, but subsequently shown also to occur somatically. All three mutations create de novo E26-specific (ETS) binding sites and result in activation of the TERT gene, allowing cancer cells to achieve replicative immortality. Here, we used a systematic proteomics screen to identify transcription factors preferentially binding to the -146C > T, -124C > T, and -57A > C mutations. Although we confirmed binding of multiple ETS factors to the mutant -146C > T and -124C > T sequences, we identified E4F1 as a -57A > C-specific binder and ZNF148 as a TERT wild-type (WT) promoter binder that showed reduced interaction with the -124C > T allele. Both proteins are activating transcription factors that bind specifically to the -57A > C and WT (at position 124) TERT promoter sequence in corresponding cell lines, and up-regulate TERT transcription and telomerase activity. Our work describes new regulators of TERT gene expression with possible roles in cancer.


Genetic screens reveal mechanisms for the transcriptional regulation of tissue-specific genes in normal cells and tumors.

  • Ikrame Naciri‎ et al.
  • Nucleic acids research‎
  • 2019‎

The proper tissue-specific regulation of gene expression is essential for development and homeostasis in metazoans. However, the illegitimate expression of normally tissue-restricted genes-like testis- or placenta-specific genes-is frequently observed in tumors; this promotes transformation, but also allows immunotherapy. Two important questions are: how is the expression of these genes controlled in healthy cells? And how is this altered in cancer? To address these questions, we used an unbiased approach to test the ability of 350 distinct genetic or epigenetic perturbations to induce the illegitimate expression of over 40 tissue-restricted genes in primary human cells. We find that almost all of these genes are remarkably resistant to reactivation by a single alteration in signaling pathways or chromatin regulation. However, a few genes differ and are more readily activated; one is the placenta-expressed gene ADAM12, which promotes invasion. Using cellular systems, an animal model, and bioinformatics, we find that a non-canonical but druggable TGF-β/KAT2A/TAK1 axis controls ADAM12 induction in normal and cancer cells. More broadly, our data show that illegitimate gene expression in cancer is an heterogeneous phenomenon, with a few genes activatable by simple events, and most genes likely requiring a combination of events to become reactivated.


Structure of the UHRF1 Tandem Tudor Domain Bound to a Methylated Non-histone Protein, LIG1, Reveals Rules for Binding and Regulation.

  • Satomi Kori‎ et al.
  • Structure (London, England : 1993)‎
  • 2019‎

The protein UHRF1 is crucial for DNA methylation maintenance. The tandem Tudor domain (TTD) of UHRF1 binds histone H3K9me2/3 with micromolar affinity, as well as unmethylated linker regions within UHRF1 itself, causing auto-inhibition. Recently, we showed that a methylated histone-like region of DNA ligase 1 (LIG1K126me2/me3) binds the UHRF1 TTD with nanomolar affinity, permitting UHRF1 recruitment to chromatin. Here we report the crystal structure of the UHRF1 TTD bound to a LIG1K126me3 peptide. The data explain the basis for the high TTD-binding affinity of LIG1K126me3 and reveal that the interaction may be regulated by phosphorylation. Binding of LIG1K126me3 switches the overall structure of UHRF1 from a closed to a flexible conformation, suggesting that auto-inhibition is relieved. Our results provide structural insight into how UHRF1 performs its key function in epigenetic maintenance.


Methylation of DNA Ligase 1 by G9a/GLP Recruits UHRF1 to Replicating DNA and Regulates DNA Methylation.

  • Laure Ferry‎ et al.
  • Molecular cell‎
  • 2017‎

DNA methylation is an essential epigenetic mark in mammals that has to be re-established after each round of DNA replication. The protein UHRF1 is essential for this process; it has been proposed that the protein targets newly replicated DNA by cooperatively binding hemi-methylated DNA and H3K9me2/3, but this model leaves a number of questions unanswered. Here, we present evidence for a direct recruitment of UHRF1 by the replication machinery via DNA ligase 1 (LIG1). A histone H3K9-like mimic within LIG1 is methylated by G9a and GLP and, compared with H3K9me2/3, more avidly binds UHRF1. Interaction with methylated LIG1 promotes the recruitment of UHRF1 to DNA replication sites and is required for DNA methylation maintenance. These results further elucidate the function of UHRF1, identify a non-histone target of G9a and GLP, and provide an example of a histone mimic that coordinates DNA replication and DNA methylation maintenance.


Unchanged PCNA and DNMT1 dynamics during replication in DNA ligase I-deficient cells but abnormal chromatin levels of non-replicative histone H1.

  • Seema Khattri Bhandari‎ et al.
  • Scientific reports‎
  • 2023‎

DNA ligase I (LigI), the predominant enzyme that joins Okazaki fragments, interacts with PCNA and Pol δ. LigI also interacts with UHRF1, linking Okazaki fragment joining with DNA maintenance methylation. Okazaki fragments can also be joined by a relatively poorly characterized DNA ligase IIIα (LigIIIα)-dependent backup pathway. Here we examined the effect of LigI-deficiency on proteins at the replication fork. Notably, LigI-deficiency did not alter the kinetics of association of the PCNA clamp, the leading strand polymerase Pol ε, DNA maintenance methylation proteins and core histones with newly synthesized DNA. While the absence of major changes in replication and methylation proteins is consistent with the similar proliferation rate and DNA methylation levels of the LIG1 null cells compared with the parental cells, the increased levels of LigIIIα/XRCC1 and Pol δ at the replication fork and in bulk chromatin indicate that there are subtle replication defects in the absence of LigI. Interestingly, the non-replicative histone H1 variant, H1.0, is enriched in the chromatin of LigI-deficient mouse CH12F3 and human 46BR.1G1 cells. This alteration was not corrected by expression of wild type LigI, suggesting that it is a relatively stable epigenetic change that may contribute to the immunodeficiencies linked with inherited LigI-deficiency syndrome.


Depletion of ZBTB38 potentiates the effects of DNA demethylating agents in cancer cells via CDKN1C mRNA up-regulation.

  • Claire Marchal‎ et al.
  • Oncogenesis‎
  • 2018‎

DNA methyltransferase inhibitor (DNMTi) treatments have been used for patients with myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML), and have shown promising beneficial effects in some other types of cancers. Here, we demonstrate that the transcriptional repressor ZBTB38 is a critical regulator of the cellular response to DNMTi. Treatments with 5-azacytidine, or its derivatives decitabine and zebularine, lead to down-regulation of ZBTB38 protein expression in cancer cells, in parallel with cellular damage. The depletion of ZBTB38 by RNA interference enhances the toxicity of DNMTi in cell lines from leukemia and from various solid tumor types. Further we observed that inactivation of ZBTB38 causes the up-regulation of CDKN1C mRNA, a previously described indirect target of DNMTi. We show that CDKN1C is a key actor of DNMTi toxicity in cells lacking ZBTB38. Finally, in patients with MDS a high level of CDKN1C mRNA expression before treatment correlates with a better clinical response to a drug regimen combining 5-azacytidine and histone deacetylase inhibitors. Collectively, our results suggest that the ZBTB38 protein is a target of DNMTi and that its depletion potentiates the toxicity of DNMT inhibitors in cancer cells, providing new opportunities to enhance the response to DNMT inhibitor therapies in patients with MDS and other cancers.


DNA methylation atlas and machinery in the developing and regenerating annelid Platynereis dumerilii.

  • Anabelle Planques‎ et al.
  • BMC biology‎
  • 2021‎

Methylation of cytosines in DNA (5mC methylation) is a major epigenetic modification that modulates gene expression and constitutes the basis for mechanisms regulating multiple aspects of embryonic development and cell reprogramming in vertebrates. In mammals, 5mC methylation of promoter regions is linked to transcriptional repression. Transcription regulation by 5mC methylation notably involves the nucleosome remodeling and deacetylase complex (NuRD complex) which bridges DNA methylation and histone modifications. However, less is known about regulatory mechanisms involving 5mC methylation and their function in non-vertebrate animals. In this paper, we study 5mC methylation in the marine annelid worm Platynereis dumerilii, an emerging evolutionary and developmental biology model capable of regenerating the posterior part of its body post-amputation.


Locus-level L1 DNA methylation profiling reveals the epigenetic and transcriptional interplay between L1s and their integration sites.

  • Sophie Lanciano‎ et al.
  • Cell genomics‎
  • 2024‎

Long interspersed element 1 (L1) retrotransposons are implicated in human disease and evolution. Their global activity is repressed by DNA methylation, but deciphering the regulation of individual copies has been challenging. Here, we combine short- and long-read sequencing to unveil L1 methylation heterogeneity across cell types, families, and individual loci and elucidate key principles involved. We find that the youngest primate L1 families are specifically hypomethylated in pluripotent stem cells and the placenta but not in most tumors. Locally, intronic L1 methylation is intimately associated with gene transcription. Conversely, the L1 methylation state can propagate to the proximal region up to 300 bp. This phenomenon is accompanied by the binding of specific transcription factors, which drive the expression of L1 and chimeric transcripts. Finally, L1 hypomethylation alone is typically insufficient to trigger L1 expression due to redundant silencing pathways. Our results illuminate the epigenetic and transcriptional interplay between retrotransposons and their host genome.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: