2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 35 papers

CSF progranulin increases in the course of Alzheimer's disease and is associated with sTREM2, neurodegeneration and cognitive decline.

  • Marc Suárez-Calvet‎ et al.
  • EMBO molecular medicine‎
  • 2018‎

Progranulin (PGRN) is predominantly expressed by microglia in the brain, and genetic and experimental evidence suggests a critical role in Alzheimer's disease (AD). We asked whether PGRN expression is changed in a disease severity-specific manner in AD We measured PGRN in cerebrospinal fluid (CSF) in two of the best-characterized AD patient cohorts, namely the Dominant Inherited Alzheimer's Disease Network (DIAN) and the Alzheimer's Disease Neuroimaging Initiative (ADNI). In carriers of AD causing dominant mutations, cross-sectionally assessed CSF PGRN increased over the course of the disease and significantly differed from non-carriers 10 years before the expected symptom onset. In late-onset AD, higher CSF PGRN was associated with more advanced disease stages and cognitive impairment. Higher CSF PGRN was associated with higher CSF soluble TREM2 (triggering receptor expressed on myeloid cells 2) only when there was underlying pathology, but not in controls. In conclusion, we demonstrate that, although CSF PGRN is not a diagnostic biomarker for AD, it may together with sTREM2 reflect microglial activation during the disease.


Measurement Repeatability of 18F-FDG PET/CT Versus 18F-FDG PET/MRI in Solid Tumors of the Pelvis.

  • Tyler J Fraum‎ et al.
  • Journal of nuclear medicine : official publication, Society of Nuclear Medicine‎
  • 2019‎

Knowledge of the within-subject variability of 18F-FDG PET/MRI measurements is necessary for proper interpretation of quantitative PET or MRI metrics in the context of therapeutic efficacy assessments with integrated PET/MRI scanners. The goal of this study was to determine the test-retest repeatability of these metrics on PET/MRI, with comparison to similar metrics acquired by PET/CT. Methods: This prospective study enrolled subjects with pathology-proven pelvic malignancies. Baseline imaging consisted of PET/CT immediately followed by PET/MRI, using a single 370-MBq 18F-FDG dose. Repeat imaging was performed within 7 d using an identical imaging protocol, with no oncologic therapy between sessions. PET imaging on both scanners consisted of a list-mode acquisition at a single pelvic station. The MRI consisted of 2-point Dixon imaging for attenuation correction, standard sequences for anatomic correlation, and diffusion-weighted imaging. PET data were statically reconstructed using various frame durations and minimizing uptake time differences between sessions. SUV metrics were extracted for both PET/CT and PET/MRI in each imaging session. Apparent diffusion coefficient (ADC) metrics were extracted for both PET/MRI sessions. Results: The study cohort consisted of 14 subjects (13 female, 1 male) with various pelvic cancers (11 cervical, 2 rectal, 1 endometrial). For SUVmax, the within-subject coefficient of variation (wCV) appeared higher for PET/CT (8.5%-12.8%) than PET/MRI (6.6%-8.7%) across all PET reconstructions, though with no significant repeatability differences (all P values ≥ 0.08) between modalities. For lean body mass-adjusted SUVpeak, the wCVs appeared similar for PET/CT (9.9%-11.5%) and PET/MRI (9.2%-11.3%) across all PET reconstructions, again with no significant repeatability differences (all P values ≥ 0.14) between modalities. For PET/MRI, the wCV for ADCmedian of 3.5% appeared lower than the wCVs for SUVmax (6.6%-8.7%) and SULpeak (9.2%-11.3%), though without significant repeatability differences (all P values ≥ 0.23). Conclusion: For solid tumors of the pelvis, the repeatability of the evaluated SUV and ADC metrics on 18F-FDG PET/MRI is both acceptably high and similar to previously published values for 18F-FDG PET/CT and MRI, supporting the use of 18F-FDG PET/MRI for quantitative oncologic treatment response assessments.


Altered microglial response to Aβ plaques in APPPS1-21 mice heterozygous for TREM2.

  • Jason D Ulrich‎ et al.
  • Molecular neurodegeneration‎
  • 2014‎

Recent genome-wide association studies linked variants in TREM2 to a strong increase in the odds of developing Alzheimer's disease. The mechanism by which TREM2 influences the susceptibility to Alzheimer's disease is currently unknown. TREM2 is expressed by microglia and is thought to regulate phagocytic and inflammatory microglial responses to brain pathology. Given that a single allele of variant TREM2, likely resulting in a loss of function, conferred an increased risk of developing Alzheimer's disease, we tested whether loss of one functional trem2 allele would affect Aβ plaque deposition or the microglial response to Aβ pathology in APPPS1-21 mice.


TREM2 activation on microglia promotes myelin debris clearance and remyelination in a model of multiple sclerosis.

  • Francesca Cignarella‎ et al.
  • Acta neuropathologica‎
  • 2020‎

Multiple sclerosis (MS) is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous system (CNS) triggered by autoimmune mechanisms. Microglia are critical for the clearance of myelin debris in areas of demyelination, a key step to allow remyelination. TREM2 is expressed by microglia and promotes microglial survival, proliferation, and phagocytic activity. Herein we demonstrate that TREM2 was highly expressed on myelin-laden phagocytes in active demyelinating lesions in the CNS of subjects with MS. In gene expression studies, macrophages from subjects with TREM2 genetic deficiency displayed a defect in phagocytic pathways. Treatment with a new TREM2 agonistic antibody promoted the clearance of myelin debris in the cuprizone model of CNS demyelination. Effects included enhancement of myelin uptake and degradation, resulting in accelerated myelin debris removal by microglia. Most importantly, antibody-dependent TREM2 activation on microglia increased density of oligodendrocyte precursors in areas of demyelination, as well as the formation of mature oligodendrocytes thus enhancing remyelination and axonal integrity. These results are relevant as they propose TREM2 on microglia as a potential new target to promote remyelination.


The impact of the COVID-19 pandemic on an international rehabilitation study in MS: the CogEx experience.

  • Anthony Feinstein‎ et al.
  • Journal of neurology‎
  • 2022‎

Pandemic restrictions have led to changes in therapy plans and disrupted rehabilitation services for people with multiple sclerosis. CogEx is an international, multicentre MS dual-intervention (cognitive rehabilitation, aerobic exercise) randomized, controlled rehabilitation trial confined to people with progressive disease. The primary outcome is cognition (processing speed).There are 11 treatment sites in six countries with participants required to make 27 site visits over 12 weeks. Collectively, the large, in-person demands of the trial, and the varying international policies for the containment of COVID-19, might disproportionately impact the administration of CogEx. During the first lockdown, all centres closed on average for 82.9 (SD = 24.3) days. One site was required to lockdown on two further occasions. One site remained closed for 16 months. Ten staff (19.2%) were required to quarantine and eight staff (15.4%) tested positive for COVID. 10 of 264 (3.8%) participants acquired COVID-19. All survived. The mean duration of enrollment delay has been [236.7 (SD = 214.5) days]. Restarting participants whose interventions were interrupted by the pandemic meant recalculating the intervention prescriptions for these individuals. While the impact of the pandemic on CogEx has been considerable, all study sites are again open. Participants and staff have shown considerable flexibility and resilience in keeping a complex, international endeavour running. The future in general remains uncertain in the midst of a pandemic, but there is cautious optimism the study will be completed with sufficient sample size to robustly evaluate our hypothesis and provide meaningful results to the MS community on the impact of these interventions on people with progressive MS.Trial registration: The trial was registered on September 20th 2018 at www.clinicaltrials.gov having identifier NCT03679468. Registration was performed before recruitment was initiated.


The late onset of emotional distress in people with progressive multiple sclerosis during the Covid-19 pandemic: longitudinal findings from the CogEx study.

  • Anthony Feinstein‎ et al.
  • Journal of neurology‎
  • 2022‎

An earlier follow-up study from the CogEx rehabilitation trial showed little change in symptoms of depression, anxiety and psychological distress during the first COVID-19 lockdown compared to pre-pandemic measurements. Here, we provide a second follow-up set of behavioral data on the CogEx sample.


Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

  • International Multiple Sclerosis Genetics Consortium‎ et al.
  • Nature‎
  • 2011‎

Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis.


Dietary Intake Regulates the Circulating Inflammatory Monocyte Pool.

  • Stefan Jordan‎ et al.
  • Cell‎
  • 2019‎

Caloric restriction is known to improve inflammatory and autoimmune diseases. However, the mechanisms by which reduced caloric intake modulates inflammation are poorly understood. Here we show that short-term fasting reduced monocyte metabolic and inflammatory activity and drastically reduced the number of circulating monocytes. Regulation of peripheral monocyte numbers was dependent on dietary glucose and protein levels. Specifically, we found that activation of the low-energy sensor 5'-AMP-activated protein kinase (AMPK) in hepatocytes and suppression of systemic CCL2 production by peroxisome proliferator-activator receptor alpha (PPARα) reduced monocyte mobilization from the bone marrow. Importantly, we show that fasting improves chronic inflammatory diseases without compromising monocyte emergency mobilization during acute infectious inflammation and tissue repair. These results reveal that caloric intake and liver energy sensors dictate the blood and tissue immune tone and link dietary habits to inflammatory disease outcome.


68Ga-Galmydar: A PET imaging tracer for noninvasive detection of Doxorubicin-induced cardiotoxicity.

  • Jothilingam Sivapackiam‎ et al.
  • PloS one‎
  • 2019‎

Cancer patients undergoing Doxorubicin (DOX) treatment are susceptible to acute and chronic cardiac anomalies, including aberrant arrhythmias, ventricular dysfunction, and heart failure. To stratify patients at high risk for DOX -related heart failure (CHF), diagnostic techniques have been sought. While echocardiography is used for monitoring LVEF and LV volumes due to its wide-availability and cost-efficiency, it may not identify early stages of the initiation of DOX-induced systolic heart failure. To address these limitations, PET tracers could also provide noninvasive assessment of early and reversible metabolic changes of the myocardium.


Predicting optimal response to B-cell depletion with rituximab in multiple sclerosis using CXCL13 index, magnetic resonance imaging and clinical measures.

  • Enrique Alvarez‎ et al.
  • Multiple sclerosis journal - experimental, translational and clinical‎
  • 2015‎

B-cell depleting drugs show promise for treating multiple sclerosis.


Study protocol: improving cognition in people with progressive multiple sclerosis: a multi-arm, randomized, blinded, sham-controlled trial of cognitive rehabilitation and aerobic exercise (COGEx).

  • Anthony Feinstein‎ et al.
  • BMC neurology‎
  • 2020‎

Cognitive dysfunction affects up to 70% of people with progressive MS (PMS). It can exert a deleterious effect on activities of daily living, employment and relationships. Preliminary evidence suggests that performance can improve with cognitive rehabilitation (CR) and aerobic exercise (EX), but existing data are predominantly from people with relapsing-remitting MS without cognitive impairment. There is therefore a need to investigate whether this is also the case in people with progressive forms of the disease who have objectively identified cognitive impairment. It is hypothesized that CR and EX are effective treatments for people with PMS who have cognitive impairment, in particular processing speed (PS) deficits, and that a combination of these two treatments is more effective than each individual treatment given alone. We further hypothesize that improvements in PS will be associated with modifications of functional and/or structural plasticity within specific brain networks/regions involved in PS measured with advanced MRI techniques.


Select Atrophied Regions in Alzheimer disease (SARA): An improved volumetric model for identifying Alzheimer disease dementia.

  • Lauren N Koenig‎ et al.
  • NeuroImage. Clinical‎
  • 2020‎

Volumetric biomarkers for Alzheimer disease (AD) are attractive due to their wide availability and ease of administration, but have traditionally shown lower diagnostic accuracy than measures of neuropathological contributors to AD. Our purpose was to optimize the diagnostic specificity of structural MRIs for AD using quantitative, data-driven techniques.


COVID-19 in Patients With Neuromyelitis Optica Spectrum Disorders and Myelin Oligodendrocyte Glycoprotein Antibody Disease in North America: From the COViMS Registry.

  • Scott D Newsome‎ et al.
  • Neurology(R) neuroimmunology & neuroinflammation‎
  • 2021‎

To describe the impact of coronavirus disease 2019 (COVID-19) on people with neuromyelitis optica spectrum disorders (NMOSD) and myelin oligodendrocyte glycoprotein antibody disease (MOGAD).


Cross-talk between B cells, microglia and macrophages, and implications to central nervous system compartmentalized inflammation and progressive multiple sclerosis.

  • Hanane Touil‎ et al.
  • EBioMedicine‎
  • 2023‎

B cells can be enriched within meningeal immune-cell aggregates of multiple sclerosis (MS) patients, adjacent to subpial cortical demyelinating lesions now recognized as important contributors to progressive disease. This subpial demyelination is notable for a 'surface-in' gradient of neuronal loss and microglial activation, potentially reflecting the effects of soluble factors secreted into the CSF. We previously demonstrated that MS B-cell secreted products are toxic to oligodendrocytes and neurons. The potential for B-cell-myeloid cell interactions to propagate progressive MS is of considerable interest.


Inverse agonism of cannabinoid CB1 receptor blocks the adhesion of encephalitogenic T cells in inflamed brain venules by a protein kinase A-dependent mechanism.

  • Barbara Rossi‎ et al.
  • Journal of neuroimmunology‎
  • 2011‎

It is well known that the cannabinoid system has a significant role in the regulation of the immune responses. Cannabinoid receptors CB1 and CB2 are expressed on T lymphocytes and mediate the immunomodulatory effects of cannabinoids on T cell functions. Here we show that the treatment of proteolipid protein (PLP)139-151-specific T cells with SR141716A, a CB1 inverse agonist and prototype of the diarylpyrazoles series, induced a strong inhibition of firm adhesion in inflamed brain venules in intravital microscopy experiments. In contrast, SR144528, a potent CB2 inverse agonist, had no significant effect on both rolling and arrest of activated T cells. In addition, two analogs of SR141716A and CB1 inverse agonists, AM251 and AM281 inhibited encephalitogenic T cell adhesion suggesting that selective CB1 inverse agonism interfere with lymphocyte trafficking in the CNS. Flow cytometry experiments showed that CB1 inverse agonists have no effect on adhesion molecule expression suggesting that CB1 blockade interferes with signal transduction pathways controlling T cell adhesion in inflamed brain venules. In addition, integrin clustering was not altered after treatment with CB1 inverse agonists suggesting that adhesion blockade is not due to the modulation of integrin valency. Notably, the inhibitory effect exerted by AM251 and AM281 on the adhesive interactions was completely reverted in the presence of protein kinase A (PKA) inhibitor H89, suggesting that cAMP and PKA activation play a key role in the adhesion blockade mediated by CB1 inverse agonists. To further strengthen these results and unveil a previously unknown inhibitory role of cAMP on activated T cell adhesion in vivo in the context of CNS inflammation, we showed that intracellular increase of cAMP induced by treatment with Bt2cAMP, a permeable analog of cAMP, and phosphodiesterase (PDE) inhibitor theophylline efficiently blocked the arrest of encephalitogenic T cells in inflamed brain venules. Our data show that modulation of CB1 function has anti-inflammatory effects and suggests that inverse agonism of CB1 block signal transduction mechanisms controlling encephalitogenic T cells adhesion in inflamed brain venules by a PKA-dependent mechanism.


Limbic system damage in MS: MRI assessment and correlations with clinical testing.

  • Jie Wen‎ et al.
  • PloS one‎
  • 2017‎

Volume loss in some limbic region structures has been observed in multiple sclerosis (MS) patients. However, in vivo evaluation of existing tissue cellular microstructure integrity has received less attention. The goal of studies reported here was to quantitatively assess loss of limbic system volumes and tissue integrity, and to evaluate associations of these measures with cognitive and physical dysfunction in MS patients. Thirty-one healthy controls (HC) and 80 MS patients, including 32 relapsing remitting (RRMS), 32 secondary progressive (SPMS) and 16 primary progressive (PPMS), participated in this study. Tissue cellular integrity was evaluated by means of recently introduced tissue-specific parameter R2t* that was calculated from multi-gradient-echo MRI signals using a recently developed method that separates R2t* from BOLD (blood oxygen level dependent) contributions to GRE signal decay rate constant (R2*), and accounting for physiological fluctuations and artifacts from background gradients. Volumes in limbic system regions, normalized to skull size (NV), were measured from standard MPRAGE images. MS patients had lower R2t* and smaller normalized volumes in the hippocampus, amygdala, and several other limbic system regions, compared to HC. Alterations in R2t* of several limbic system regions correlated with clinical and neurocognitive test scores in MS patients. In contrast, smaller normalized volumes in MS were only correlated with neurocognitive test scores in the hippocampus and amygdala. This study reports the novel finding that R2t*, a measure that estimates tissue integrity, is more sensitive to tissue damage in limbic system structures than is atrophy. R2t* measurements can serve as a biomarker that is distinct from and complementary to volume measurements.


Early microglial response, myelin deterioration and lethality in mice deficient for very long chain ceramide synthesis in oligodendrocytes.

  • Jonathan D Teo‎ et al.
  • Glia‎
  • 2023‎

The sphingolipids galactosylceramide (GalCer), sulfatide (ST) and sphingomyelin (SM) are essential for myelin stability and function. GalCer and ST are synthesized mostly from C22-C24 ceramides, generated by Ceramide Synthase 2 (CerS2). To clarify the requirement for C22-C24 sphingolipid synthesis in myelin biosynthesis and stability, we generated mice lacking CerS2 specifically in myelinating cells (CerS2ΔO/ΔO ). At 6 weeks of age, normal-appearing myelin had formed in CerS2ΔO/ΔO mice, however there was a reduction in myelin thickness and the percentage of myelinated axons. Pronounced loss of C22-C24 sphingolipids in myelin of CerS2ΔO/ΔO mice was compensated by greatly increased levels of C18 sphingolipids. A distinct microglial population expressing high levels of activation and phagocytic markers such as CD64, CD11c, MHC class II, and CD68 was apparent at 6 weeks of age in CerS2ΔO/ΔO mice, and had increased by 10 weeks. Increased staining for denatured myelin basic protein was also apparent in 6-week-old CerS2ΔO/ΔO mice. By 16 weeks, CerS2ΔO/ΔO mice showed pronounced myelin atrophy, motor deficits, and axon beading, a hallmark of axon stress. 90% of CerS2ΔO/ΔO mice died between 16 and 26 weeks of age. This study highlights the importance of sphingolipid acyl chain length for the structural integrity of myelin, demonstrating how a modest reduction in lipid chain length causes exposure of a denatured myelin protein epitope and expansion of phagocytic microglia, followed by axon pathology, myelin degeneration, and motor deficits. Understanding the molecular trigger for microglial activation should aid the development of therapeutics for demyelinating and neurodegenerative diseases.


A Whole-Genome Sequencing Study Implicates GRAMD1B in Multiple Sclerosis Susceptibility.

  • Federica Esposito‎ et al.
  • Genes‎
  • 2022‎

While the role of common genetic variants in multiple sclerosis (MS) has been elucidated in large genome-wide association studies, the contribution of rare variants to the disease remains unclear. Herein, a whole-genome sequencing study in four affected and four healthy relatives of a consanguineous Italian family identified a novel missense c.1801T > C (p.S601P) variant in the GRAMD1B gene that is shared within MS cases and resides under a linkage peak (LOD: 2.194). Sequencing GRAMD1B in 91 familial MS cases revealed two additional rare missense and two splice-site variants, two of which (rs755488531 and rs769527838) were not found in 1000 Italian healthy controls. Functional studies demonstrated that GRAMD1B, a gene with unknown function in the central nervous system (CNS), is expressed by several cell types, including astrocytes, microglia and neurons as well as by peripheral monocytes and macrophages. Notably, GRAMD1B was downregulated in vessel-associated astrocytes of active MS lesions in autopsied brains and by inflammatory stimuli in peripheral monocytes, suggesting a possible role in the modulation of inflammatory response and disease pathophysiology.


African Americans Have Differences in CSF Soluble TREM2 and Associated Genetic Variants.

  • Suzanne E Schindler‎ et al.
  • Neurology. Genetics‎
  • 2021‎

To evaluate for racial differences in triggering receptor expressed on myeloid cells 2 (TREM2), a key immune mediator in Alzheimer disease, the levels of CSF soluble TREM2 (sTREM2), and the frequency of associated genetic variants were compared in groups of individuals who self-reported their race as African American (AA) or non-Hispanic White (NHW).


Polygenicity of Comorbid Depression in Multiple Sclerosis.

  • Kaarina Kowalec‎ et al.
  • Neurology‎
  • 2023‎

Depression is common in multiple sclerosis (MS) and is associated with faster disability progression. The etiology of comorbid depression in MS remains poorly understood. Identification of individuals with a high risk of depression, through polygenic scores (PGS), may facilitate earlier identification. Previous genetic studies of depression considered depression as a primary disorder, not a comorbidity, and thus, findings may not generalize to MS. Body mass index (BMI) is a risk factor of both MS and depression, and its association may highlight differences in depression in MS. To improve the understanding of comorbid depression in MS, we will investigate PGS in people with MS, with the hypothesis that a higher depression PGS is associated with increased odds for comorbid depression in MS.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: