Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

Musk ketone induces apoptosis of gastric cancer cells via downregulation of sorbin and SH3 domain containing 2.

  • Juan An‎ et al.
  • Molecular medicine reports‎
  • 2021‎

Musk ketone exerts antiproliferative effects on several types of cancer, such as lung and breast cancer. However, the effects and underlying mechanisms of action of musk ketone in gastric cancer (GC) are poorly understood. The present study aimed to investigate the effects of musk ketone in GC cells. The present study indicated that musk ketone exerted significant anticancer effects on GC cells. The IC50 values of musk ketone were 4.2 and 10.06 µM in AGS and HGC‑27 cells, respectively. Low dosage of musk ketone significantly suppressed the proliferation and colony formation of AGS and HGC‑27 cells. Cell cycle arrest and apoptosis were induced by musk ketone. Furthermore, microarray data indicated that musk ketone treatment led to downregulation of various genes, including sorbin and SH3 domain containing 2 (SORBS2). Reverse transcription‑quantitative PCR and immunoblotting results indicated that musk ketone repressed mRNA and protein expression levels of SORBS2. It was also shown that knockdown of SORBS2 inhibited the proliferation and colony formation of HGC‑27 cells. The antiproliferative effects of musk ketone were decreased in HGC‑27 cells with SORBS2 silencing. In summary, the present study indicated that musk ketone suppressed the proliferation and growth of GC partly by downregulating SORBS2 expression.


Senescence atlas reveals an aged-like inflamed niche that blunts muscle regeneration.

  • Victoria Moiseeva‎ et al.
  • Nature‎
  • 2023‎

Tissue regeneration requires coordination between resident stem cells and local niche cells1,2. Here we identify that senescent cells are integral components of the skeletal muscle regenerative niche that repress regeneration at all stages of life. The technical limitation of senescent-cell scarcity3 was overcome by combining single-cell transcriptomics and a senescent-cell enrichment sorting protocol. We identified and isolated different senescent cell types from damaged muscles of young and old mice. Deeper transcriptome, chromatin and pathway analyses revealed conservation of cell identity traits as well as two universal senescence hallmarks (inflammation and fibrosis) across cell type, regeneration time and ageing. Senescent cells create an aged-like inflamed niche that mirrors inflammation associated with ageing (inflammageing4) and arrests stem cell proliferation and regeneration. Reducing the burden of senescent cells, or reducing their inflammatory secretome through CD36 neutralization, accelerates regeneration in young and old mice. By contrast, transplantation of senescent cells delays regeneration. Our results provide a technique for isolating in vivo senescent cells, define a senescence blueprint for muscle, and uncover unproductive functional interactions between senescent cells and stem cells in regenerative niches that can be overcome. As senescent cells also accumulate in human muscles, our findings open potential paths for improving muscle repair throughout life.


Thyroid transcription factor 1 (TTF-1) negativity as a predictor of unfavorable response to EGFR-TKI therapy in advanced lung adenocarcinoma patients with EGFR mutations.

  • Xiaosheng Ding‎ et al.
  • Thoracic cancer‎
  • 2023‎

The absence of thyroid transcription factor 1 (TTF-1) is associated with a lower frequency of epidermal growth factor receptor (EGFR) mutations in lung adenocarcinoma (LUAD). The aim of this study was to assess the impact of TTF-1 expression on the clinical response to EGFR-tyrosine kinase inhibitor (TKI) treatment in patients with advanced LUAD.


Glucose-coated Berberine Nanodrug for Glioma Therapy through Mitochondrial Pathway.

  • Shubin Wang‎ et al.
  • International journal of nanomedicine‎
  • 2020‎

Glioma is the primary malignant brain tumor with poor prognosis. Berberine (BBR) was the potential drug for anti-tumor in glioma cells. Based on its limitation of poor aqueous solubility and instability, little information of BBR nanoparticles is reported in glioma.


Sestrin prevents atrophy of disused and aging muscles by integrating anabolic and catabolic signals.

  • Jessica Segalés‎ et al.
  • Nature communications‎
  • 2020‎

A unique property of skeletal muscle is its ability to adapt its mass to changes in activity. Inactivity, as in disuse or aging, causes atrophy, the loss of muscle mass and strength, leading to physical incapacity and poor quality of life. Here, through a combination of transcriptomics and transgenesis, we identify sestrins, a family of stress-inducible metabolic regulators, as protective factors against muscle wasting. Sestrin expression decreases during inactivity and its genetic deficiency exacerbates muscle wasting; conversely, sestrin overexpression suffices to prevent atrophy. This protection occurs through mTORC1 inhibition, which upregulates autophagy, and AKT activation, which in turn inhibits FoxO-regulated ubiquitin-proteasome-mediated proteolysis. This study reveals sestrin as a central integrator of anabolic and degradative pathways preventing muscle wasting. Since sestrin also protected muscles against aging-induced atrophy, our findings have implications for sarcopenia.


Dysregulation of MiR-30a-3p/Gastrin Enhances Tumor Growth and Invasion throughSTAT3/MMP11 Pathway in Gastric Cancer.

  • Yan Liu‎ et al.
  • OncoTargets and therapy‎
  • 2020‎

Gastrin (GAST) is a well-known hormone regulating gastric biofunctions in the secretion of acid and maintaining its structural integrity. Furthermore, the dysregulation of GAST is also involved in the development of various forms of cancer. However, there are some limitations for illustrating the cellular regulation of GAST and its regulatory mechanisms in gastric malignant transformation and the potential epigenetic regulators systematically.


Cell atlas of CCl 4-induced progressive liver fibrosis reveals stage-specific responses.

  • Peng-Cheng Guo‎ et al.
  • Zoological research‎
  • 2023‎

Chronic liver injury leads to progressive liver fibrosis and ultimately cirrhosis, a major cause of morbidity and mortality worldwide. However, there are currently no effective anti-fibrotic therapies available, especially for late-stage patients, which is partly attributed to the major knowledge gap regarding liver cell heterogeneity and cell-specific responses in different fibrosis stages. To reveal the multicellular networks regulating mammalian liver fibrosis from mild to severe phenotypes, we generated a single-nucleus transcriptomic atlas encompassing 49 919 nuclei corresponding to all main liver cell types at different stages of murine carbon tetrachloride (CCl 4)-induced progressive liver fibrosis. Integrative analysis distinguished the sequential responses to injury of hepatocytes, hepatic stellate cells and endothelial cells. Moreover, we reconstructed cell-cell interactions and gene regulatory networks implicated in these processes. These integrative analyses uncovered previously overlooked aspects of hepatocyte proliferation exhaustion and disrupted pericentral metabolic functions, dysfunction for clearance by apoptosis of activated hepatic stellate cells, accumulation of pro-fibrotic signals, and the switch from an anti-angiogenic to a pro-angiogenic program during CCl 4-induced progressive liver fibrosis. Our dataset thus constitutes a useful resource for understanding the molecular basis of progressive liver fibrosis using a relevant animal model.


Kinetics of pulmonary immune cells, antibody responses and their correlations with the viral clearance of influenza A fatal infection in mice.

  • Jin Lv‎ et al.
  • Virology journal‎
  • 2014‎

Fatal influenza A virus infection is a major threat to public health throughout the world. Lung macrophages and neutrophils have critical roles for both the pathogenesis and viral clearance of fatal viral infections. These are complicated by the interaction of innate immunity and adaptive immunity against viral infection. In this study, we investigated the overall kinetics of lung macrophages, neutrophils, CD4⁺T cells, CD8⁺T cells, CD38⁺ cells, and CD138⁺ cells, the levels of antibody and cytokine responses, both in the early and late phases of fatal infection with A/PR/8/34 (H1N1) virus in mice. The changes in lung viral load were also evaluated. We found that pulmonary macrophages and neutrophils both accumulated in the early and late phases of fatal infections and they positively correlated with the lung and serum antibody titers, and negatively correlated with the viral load locally. The secretion of IL-6 might relate to high numbers of macrophages and neutrophils in the early infection. The work implies that pulmonary macrophages, neutrophils and the antibody response all have an essential role in virus elimination of fatal influenza A viral infection. These findings may have implications for the development of prophylactic and therapeutic strategies in fatal influenza A viral infection. Further evaluation of the cooperation among macrophages, neutrophils and antibody responses in eliminating the virus with fatal infection is needed.


A three serum miRNA panel as diagnostic biomarkers of radiotherapy-related metastasis in non-small cell lung cancer.

  • Jin Lv‎ et al.
  • Oncology letters‎
  • 2020‎

Serum microRNAs (miRNAs) have been implicated as noninvasive biomarkers for lung cancer diagnosis. However, there are no sensitive and specific biomarkers for the detection of radiotherapy-related non-small cell lung cancer (NSCLC) metastasis. The present study aimed to investigate the role of three serum miRNAs, namely miRNA (miR)-130a, miR-25 and miR-191*, in diagnosing NSCLC, and their biological functions in radiation-mediated development of metastatic properties in A549 cells. To determine this, serum samples were collected from 84 patients with NSCLC and 42 age- and sex-matched healthy controls. Differential expression of serum miRNAs was analyzed by quantitative PCR. Significant associations between miRNA expression and overall survival of patients with NSCLC were identified using the Cox proportional regression model. A receiver operating characteristic curve was generated to evaluate diagnostic accuracy. The functions of miR-130a, miR-25 and miR-191* in lung cancer cells were studied by transfecting A549 cells with miRNA mimics and inhibitors. The results of the present study demonstrated that the expression levels of miR-130a, miR-25 and miR-191* in the serum of patients with NSCLC were increased compared with those in healthy controls, and these increases were associated with advanced age (≥60 years), radiotherapy, histological type (squamous carcinoma), low survival rate and low median survival time. Additionally, irradiation induced the upregulation of miR-130a, miR-25 and miR-191* expression in A549 cells in vitro and in a xenograft mouse model. Irradiation also promoted the invasiveness of A549 cells in vitro and metastasis in vivo. In conclusion, miR-130a, miR-25 and miR-191* may be potential biomarkers for the diagnosis of patients with NSCLC and may serve oncogenic roles in radiation-mediated metastasis of NSCLC.


Combining Organic Fertilizer With Controlled-Release Urea to Reduce Nitrogen Leaching and Promote Wheat Yields.

  • Xiuyi Yang‎ et al.
  • Frontiers in plant science‎
  • 2021‎

Soil deterioration, low nitrogen use efficiency (NUE), and environmental risks caused by excessive chemical N fertilizer use are key factors restricting sustainable agriculture. It is extremely critical to develop effective N management strategies that consider both environmental and agronomic benefits. From 2017 to 2019, a field experiment was conducted to assess the effects of combinations of organic fertilizers (OF, provided at 30, 50, and 70% of the total applied N) and controlled-release urea (CU) on the NUE, N leaching and wheat yield compared with the effects of urea and CU. The results suggested that OF released N slowly in the early stage and showed a significant residual effect, while CU released N quickly in the first 2 months. The OF substitutes with 30-50% CU increased wheat yield by 4.2-9.2%, while the 70%OF+30%CU treatment showed no significant difference relative to the urea treatment. The average maximum apparent NUE recovery (50.4%) was achieved under the 50%OF+50%CU treatment, but the partial factor productivity was not affected by the N type. As the OF application rate increased, the total carbon content increased, and the total N value decreased. The NO 3 - -N and NH 4 + -N concentrations in the OF+CU treatments were lower before the jointing stage but higher from the grain-filling to mature stages than those in the urea treatment. NO 3 - -N and NH 4 + -N were mainly concentrated in the 0-60-cm layer soil by OF substitution, and N leaching to the 60-100-cm soil layer was significantly reduced. Hence, the results suggest that the combination of 30-50% OF with CU synchronizes absorption with availability due to a period of increased N availability in soils and proved to be the best strategy for simultaneously increasing wheat production and reducing N leaching.


Podofilox suppresses gastric cancer cell proliferation by regulating cell cycle arrest and the c-Myc/ATG10 axis.

  • Juan An‎ et al.
  • Experimental and therapeutic medicine‎
  • 2021‎

Gastric cancer (GC) is a malignancy for which effective therapeutic drugs are limited. Podofilox exhibits antitumor effects in various types of cancer; however, whether it may inhibit GC growth remains unknown. The aim of the present study was to investigate the role of podofilox in GC. Cell Counting Kit-8, colony formation and cell cycle assays were used to detect the role of podofilox on cellular proliferation and the cell cycle, respectively. A microarray was used to detect the transcriptional changes induced by podofilox in GC cells. The results of the present study demonstrated that podofilox inhibited GC cell proliferation and colony formation. The half maximal inhibitory concentration of podofilox in AGS and HGC-27 cells was 2.327 and 1.981 nM, respectively. In addition, treatment with podofilox induced G0/G1 cell cycle arrest. Molecular analysis based on microarray data demonstrated that podofilox altered the expression levels of genes involved in the cell cycle, c-Myc and p53 signaling. Autophagy-related 10 (ATG10), which was highly expressed in GC tissues, was also downregulated by podofilox, as demonstrated by the results of the microarray analysis and immunoblotting. To determine the involvement of ATG10 in GC, ATG10 was knocked down in GC cells by small interfering RNA, which suppressed the proliferation and colony formation of GC cells compared with those observed in the control-transfected cells. Taken together, the results of the present study suggested that podofilox may inhibit GC cell proliferation by preventing the cell cycle progression and regulating the c-Myc/ATG10 signaling pathway.


Geriatric muscle stem cells switch reversible quiescence into senescence.

  • Pedro Sousa-Victor‎ et al.
  • Nature‎
  • 2014‎

Regeneration of skeletal muscle depends on a population of adult stem cells (satellite cells) that remain quiescent throughout life. Satellite cell regenerative functions decline with ageing. Here we report that geriatric satellite cells are incapable of maintaining their normal quiescent state in muscle homeostatic conditions, and that this irreversibly affects their intrinsic regenerative and self-renewal capacities. In geriatric mice, resting satellite cells lose reversible quiescence by switching to an irreversible pre-senescence state, caused by derepression of p16(INK4a) (also called Cdkn2a). On injury, these cells fail to activate and expand, undergoing accelerated entry into a full senescence state (geroconversion), even in a youthful environment. p16(INK4a) silencing in geriatric satellite cells restores quiescence and muscle regenerative functions. Our results demonstrate that maintenance of quiescence in adult life depends on the active repression of senescence pathways. As p16(INK4a) is dysregulated in human geriatric satellite cells, these findings provide the basis for stem-cell rejuvenation in sarcopenic muscles.


Adaptive laboratory evolution of Rhodococcus rhodochrous DSM6263 for chlorophenol degradation under hypersaline condition.

  • Jie Zheng‎ et al.
  • Microbial cell factories‎
  • 2023‎

Normally, a salt amount greater than 3.5% (w/v) is defined as hypersaline. Large amounts of hypersaline wastewater containing organic pollutants need to be treated before it can be discharged into the environment. The most critical aspect of the biological treatment of saline wastewater is the inhibitory/toxic effect exerted on bacterial metabolism by high salt concentrations. Although efforts have been dedicated to improving the performance through the use of salt-tolerant or halophilic bacteria, the diversities of the strains and the range of substrate spectrum remain limited, especially in chlorophenol wastewater treatment.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: