Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 45 papers

Quantification of nucleic acid quality in postmortem tissues from a cancer research autopsy program.

  • Jun Fan‎ et al.
  • Oncotarget‎
  • 2016‎

The last decade has seen a marked rise in the use of cancer tissues obtained from research autopsies. Such resources have been invaluable for studying cancer evolution or the mechanisms of therapeutic resistance to targeted therapies. Degradation of biomolecules is a potential challenge to usage of cancer tissues obtained in the post-mortem setting and remains incompletely studied. We analysed the nucleic acid quality in 371 different frozen tissue samples collected from 80 patients who underwent a research autopsy, including eight normal tissue types, primary and metastatic tumors. Our results indicate that RNA integrity number (RIN) of normal tissues decline with the elongation of post-mortem interval (PMI) in a tissue-type specific manner. Unlike normal tissues, the RNA quality of cancer tissues is highly variable with respect to post-mortem interval. The kinetics of DNA damage also has tissue type-specific features. Moreover, while DNA degradation is an indicator of low RNA quality, the converse is not true. Finally, we show that despite RIN values as low as 5.0, robust data can be obtained by RNA sequencing that reliably discriminates expression signatures.


Prevalence of Germline Mutations Associated With Cancer Risk in Patients With Intraductal Papillary Mucinous Neoplasms.

  • Michael Skaro‎ et al.
  • Gastroenterology‎
  • 2019‎

Many patients with pancreatic adenocarcinoma carry germline mutations associated with increased risk of cancer. It is not clear whether patients with intraductal papillary mucinous neoplasms (IPMNs), which are precursors to some pancreatic cancers, also carry these mutations. We assessed the prevalence of germline mutations associated with cancer risk in patients with histologically confirmed IPMN.


Liquid Biopsy as Surrogate for Tissue for Molecular Profiling in Pancreatic Cancer: A Meta-Analysis Towards Precision Medicine.

  • Claudio Luchini‎ et al.
  • Cancers‎
  • 2019‎

Liquid biopsy (LB) is a non-invasive approach representing a promising tool for new precision medicine strategies for cancer treatment. However, a comprehensive analysis of its reliability for pancreatic cancer (PC) is lacking. To this aim, we performed the first meta-analysis on this topic. We calculated the pooled sensitivity, specificity, positive (LR+) and negative (LR-) likelihood ratio, and diagnostic odds ratio (DOR). A summary receiver operating characteristic curve (SROC) and area under curve (AUC) were used to evaluate the overall accuracy. We finally assessed the concordance rate of all mutations detected by multi-genes panels. Fourteen eligible studies involving 369 patients were included. The overall pooled sensitivity and specificity were 0.70 and 0.86, respectively. The LR+ was 3.85, the LR- was 0.34 and DOR was 15.84. The SROC curve with an AUC of 0.88 indicated a relatively high accuracy of LB for molecular characterization of PC. The concordance rate of all mutations detected by multi-genes panels was 31.9%. LB can serve as surrogate for tissue in the molecular profiling of PC, because of its relatively high sensitivity, specificity and accuracy. It represents a unique opportunity to be further explored towards its introduction in clinical practice and for developing new precision medicine approaches against PC.


A p53 Super-tumor Suppressor Reveals a Tumor Suppressive p53-Ptpn14-Yap Axis in Pancreatic Cancer.

  • Stephano S Mello‎ et al.
  • Cancer cell‎
  • 2017‎

The p53 transcription factor is a critical barrier to pancreatic cancer progression. To unravel mechanisms of p53-mediated tumor suppression, which have remained elusive, we analyzed pancreatic cancer development in mice expressing p53 transcriptional activation domain (TAD) mutants. Surprisingly, the p5353,54 TAD2 mutant behaves as a "super-tumor suppressor," with an enhanced capacity to both suppress pancreatic cancer and transactivate select p53 target genes, including Ptpn14. Ptpn14 encodes a negative regulator of the Yap oncoprotein and is necessary and sufficient for pancreatic cancer suppression, like p53. We show that p53 deficiency promotes Yap signaling and that PTPN14 and TP53 mutations are mutually exclusive in human cancers. These studies uncover a p53-Ptpn14-Yap pathway that is integral to p53-mediated tumor suppression.


Assessment of ARX expression, a novel biomarker for metastatic risk in pancreatic neuroendocrine tumors, in endoscopic ultrasound fine-needle aspiration.

  • Wenzel M Hackeng‎ et al.
  • Diagnostic cytopathology‎
  • 2020‎

The transcription factors ARX and PDX1, and alternative lengthening of telomeres (ALT) were recently described as prognostic markers for resected non-functional pancreatic neuroendocrine tumors (PanNETs). ALT positive tumors with ARX expression relapse most often. Currently, tumor size is the only preoperative marker used to decide whether or not to operate, thus additional preoperative prognostic markers are needed. Therefore, it is critical to assess the performance of these biomarkers on preoperative cytologic specimens.


Optimal timing for prediction of pathologic complete response to neoadjuvant chemoradiotherapy with diffusion-weighted MRI in patients with esophageal cancer.

  • Alicia S Borggreve‎ et al.
  • European radiology‎
  • 2020‎

This study was conducted in order to determine the optimal timing of diffusion-weighted magnetic resonance imaging (DW-MRI) for prediction of pathologic complete response (pCR) to neoadjuvant chemoradiotherapy (nCRT) for esophageal cancer.


Alternative Lengthening of Telomeres and Differential Expression of Endocrine Transcription Factors Distinguish Metastatic and Non-metastatic Insulinomas.

  • Wenzel M Hackeng‎ et al.
  • Endocrine pathology‎
  • 2020‎

Insulin-producing pancreatic neuroendocrine tumors (PanNETs)/insulinomas are generally considered to be indolent tumors with an excellent prognosis after complete resection. However, some insulinomas have a poor prognosis due to relapses and metastatic disease. Recently, studies in non-functional PanNETs indicated that behavior can be stratified according to alpha- and beta-cell differentiation, as defined by expression of the transcription factors ARX and PDX1, respectively. It is unknown whether similar mechanisms play a role in insulinomas. Therefore, we determined ARX and PDX1 expression in a cohort of 35 sporadic primary insulinomas and two liver metastases of inoperable primary insulinomas. In addition, WHO grade and loss of ATRX or DAXX were determined by immunohistochemistry, and alternative lengthening of telomeres (ALT) and CDKN2A status by fluorescence in situ hybridization. These findings were correlated with tumor characteristics and clinical follow-up data. In total, five out of 37 insulinoma patients developed metastatic disease. Metastatic insulinomas were all larger than 3 cm, whereas the indolent insulinomas were smaller (p value < 0.05). All three primary insulinomas that metastasized showed ARX expression, 2/3 showed ALT, and 1/3 had a homozygous deletion of CDKN2A as opposed to absence of ARX expression, ALT, or CDKN2A deletions in the 32 non-metastatic cases. The two liver metastases also showed ARX expression and ALT (2/2). The presence of ARX expression, which is usually absent in beta-cells, and genetic alterations not seen in indolent insulinomas strongly suggest a distinct tumorigenic mechanism in malignant insulinomas, with similarities to non-functional PanNETs. These observations may inform future follow-up strategies after insulinoma surgery.


Comprehensive Genomic Profiling of Neuroendocrine Carcinomas of the Gastrointestinal System.

  • Shinichi Yachida‎ et al.
  • Cancer discovery‎
  • 2022‎

The neuroendocrine carcinoma of the gastrointestinal system (GIS-NEC) is a rare but highly malignant neoplasm. We analyzed 115 cases using whole-genome/exome sequencing, transcriptome sequencing, DNA methylation assays, and/or ATAC-seq and found GIS-NECs to be genetically distinct from neuroendocrine tumors (GIS-NET) in the same location. Clear genomic differences were also evident between pancreatic NECs (Panc-NEC) and nonpancreatic GIS-NECs (Nonpanc-NEC). Panc-NECs could be classified into two subgroups (i.e., "ductal-type" and "acinar-type") based on genomic features. Alterations in TP53 and RB1 proved common in GIS-NECs, and most Nonpanc-NECs with intact RB1 demonstrated mutually exclusive amplification of CCNE1 or MYC. Alterations of the Notch gene family were characteristic of Nonpanc-NECs. Transcription factors for neuroendocrine differentiation, especially the SOX2 gene, appeared overexpressed in most GIS-NECs due to hypermethylation of the promoter region. This first comprehensive study of genomic alterations in GIS-NECs uncovered several key biological processes underlying genesis of this very lethal form of cancer.


Morphology-guided transcriptomic analysis of human pancreatic cancer organoids reveals microenvironmental signals that enhance invasion.

  • Yea Ji Jeong‎ et al.
  • The Journal of clinical investigation‎
  • 2023‎

Pancreatic ductal adenocarcinoma (PDAC) frequently presents with metastasis, but the molecular programs in human PDAC cells that drive invasion are not well understood. Using an experimental pipeline enabling PDAC organoid isolation and collection based on invasive phenotype, we assessed the transcriptomic programs associated with invasion in our organoid model. We identified differentially expressed genes in invasive organoids compared with matched noninvasive organoids from the same patients, and we confirmed that the encoded proteins were enhanced in organoid invasive protrusions. We identified 3 distinct transcriptomic groups in invasive organoids, 2 of which correlated directly with the morphological invasion patterns and were characterized by distinct upregulated pathways. Leveraging publicly available single-cell RNA-sequencing data, we mapped our transcriptomic groups onto human PDAC tissue samples, highlighting differences in the tumor microenvironment between transcriptomic groups and suggesting that non-neoplastic cells in the tumor microenvironment can modulate tumor cell invasion. To further address this possibility, we performed computational ligand-receptor analysis and validated the impact of multiple ligands (TGF-β1, IL-6, CXCL12, MMP9) on invasion and gene expression in an independent cohort of fresh human PDAC organoids. Our results identify molecular programs driving morphologically defined invasion patterns and highlight the tumor microenvironment as a potential modulator of these programs.


Druggable growth dependencies and tumor evolution analysis in patient-derived organoids of neuroendocrine neoplasms from multiple body sites.

  • Talya L Dayton‎ et al.
  • Cancer cell‎
  • 2023‎

Neuroendocrine neoplasms (NENs) comprise well-differentiated neuroendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs). Treatment options for patients with NENs are limited, in part due to lack of accurate models. We establish patient-derived tumor organoids (PDTOs) from pulmonary NETs and derive PDTOs from an understudied subtype of NEC, large cell neuroendocrine carcinoma (LCNEC), arising from multiple body sites. PDTOs maintain the gene expression patterns, intra-tumoral heterogeneity, and evolutionary processes of parental tumors. Through hypothesis-driven drug sensitivity analyses, we identify ASCL1 as a potential biomarker for response of LCNEC to treatment with BCL-2 inhibitors. Additionally, we discover a dependency on EGF in pulmonary NET PDTOs. Consistent with these findings, we find that, in an independent cohort, approximately 50% of pulmonary NETs express EGFR. This study identifies an actionable vulnerability for a subset of pulmonary NETs, emphasizing the utility of these PDTO models.


Pathological and molecular evaluation of pancreatic neoplasms.

  • Arvind Rishi‎ et al.
  • Seminars in oncology‎
  • 2015‎

Pancreatic neoplasms are morphologically and genetically heterogeneous and include a wide variety of tumors ranging from benign to malignant with an extremely poor clinical outcome. Our understanding of these pancreatic neoplasms has improved significantly with recent advances in cancer sequencing. Awareness of molecular pathogenesis brings new opportunities for early detection, improved prognostication, and personalized gene-specific therapies. Here we review the pathological classification of pancreatic neoplasms from the molecular and genetic perspectives.


Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression.

  • Hanane Laklai‎ et al.
  • Nature medicine‎
  • 2016‎

Fibrosis compromises pancreatic ductal carcinoma (PDAC) treatment and contributes to patient mortality, yet antistromal therapies are controversial. We found that human PDACs with impaired epithelial transforming growth factor-β (TGF-β) signaling have high epithelial STAT3 activity and develop stiff, matricellular-enriched fibrosis associated with high epithelial tension and shorter patient survival. In several KRAS-driven mouse models, both the loss of TGF-β signaling and elevated β1-integrin mechanosignaling engaged a positive feedback loop whereby STAT3 signaling promotes tumor progression by increasing matricellular fibrosis and tissue tension. In contrast, epithelial STAT3 ablation attenuated tumor progression by reducing the stromal stiffening and epithelial contractility induced by loss of TGF-β signaling. In PDAC patient biopsies, higher matricellular protein and activated STAT3 were associated with SMAD4 mutation and shorter survival. The findings implicate epithelial tension and matricellular fibrosis in the aggressiveness of SMAD4 mutant pancreatic tumors and highlight STAT3 and mechanics as key drivers of this phenotype.


Genomic analyses of gynaecologic carcinosarcomas reveal frequent mutations in chromatin remodelling genes.

  • Siân Jones‎ et al.
  • Nature communications‎
  • 2014‎

Malignant mixed Müllerian tumours, also known as carcinosarcomas, are rare tumours of gynaecological origin. Here we perform whole-exome analyses of 22 tumours using massively parallel sequencing to determine the mutational landscape of this tumour type. On average, we identify 43 mutations per tumour, excluding four cases with a mutator phenotype that harboured inactivating mutations in mismatch repair genes. In addition to mutations in TP53 and KRAS, we identify genetic alterations in chromatin remodelling genes, ARID1A and ARID1B, in histone methyltransferase MLL3, in histone deacetylase modifier SPOP and in chromatin assembly factor BAZ1A, in nearly two thirds of cases. Alterations in genes with potential clinical utility are observed in more than three quarters of the cases and included members of the PI3-kinase and homologous DNA repair pathways. These findings highlight the importance of the dysregulation of chromatin remodelling in carcinosarcoma tumorigenesis and suggest new avenues for personalized therapy.


Pancreatic cancer arising in the remnant pancreas is not always a relapse of the preceding primary.

  • Claudio Luchini‎ et al.
  • Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc‎
  • 2019‎

This study aimed to understand the biology of pancreatic ductal adenocarcinoma that arises in the remnant pancreas after surgical resection of a primary pancreatic ductal adenocarcinoma, using integrated histological and molecular analysis. Patients who underwent a completion pancreatectomy for local recurrence following resection of a primary pancreatic ductal adenocarcinoma were studied with histological analysis and next-generation sequencing of the primary and the recurrent cancer. Of six patients that met the inclusion criteria, three cases were classified as "true" recurrences, i.e., the primary and the cancer in the remnant pancreas shared both morphological features and molecular alterations. Two cases were identified as having independent cancers that exhibited different histological and molecular profiles. In the remaining case, the relationship could not be determined. Pancreatic ductal adenocarcinoma that arises in the remnant pancreas can be either a second primary or a "true" relapse of the preceding primary. The differentiation of second primaries from local recurrences may have important implications for patient management.


Enhancer signatures stratify and predict outcomes of non-functional pancreatic neuroendocrine tumors.

  • Paloma Cejas‎ et al.
  • Nature medicine‎
  • 2019‎

Most pancreatic neuroendocrine tumors (PNETs) do not produce excess hormones and are therefore considered 'non-functional'1-3. As clinical behaviors vary widely and distant metastases are eventually lethal2,4, biological classifications might guide treatment. Using enhancer maps to infer gene regulatory programs, we find that non-functional PNETs fall into two major subtypes, with epigenomes and transcriptomes that partially resemble islet α- and β-cells. Transcription factors ARX and PDX1 specify these normal cells, respectively5,6, and 84% of 142 non-functional PNETs expressed one or the other factor, occasionally both. Among 103 cases, distant relapses occurred almost exclusively in patients with ARX+PDX1- tumors and, within this subtype, in cases with alternative lengthening of telomeres. These markedly different outcomes belied similar clinical presentations and histology and, in one cohort, occurred irrespective of MEN1 mutation. This robust molecular stratification provides insight into cell lineage correlates of non-functional PNETs, accurately predicts disease course and can inform postoperative clinical decisions.


Ex Vivo Assessment of Tumor-Targeting Fluorescent Tracers for Image-Guided Surgery.

  • Fortuné M K Elekonawo‎ et al.
  • Cancers‎
  • 2020‎

Image-guided surgery can aid in achieving complete tumor resection. The development and assessment of tumor-targeted imaging probes for near-infrared fluorescence image-guided surgery relies mainly on preclinical models, but the translation to clinical use remains challenging. In the current study, we introduce and evaluate the application of a dual-labelled tumor-targeting antibody for ex vivo incubation of freshly resected human tumor specimens and assessed the tumor-to-adjacent tissue ratio of the detectable signals. Immediately after surgical resection, peritoneal tumors of colorectal origin were placed in cold medium. Subsequently, tumors were incubated with 111In-DOTA-hMN-14-IRDye800CW, an anti-carcinoembryonic antigen (CEA) antibody with a fluorescent and radioactive label. Tumors were then washed, fixed, and analyzed for the presence and location of tumor cells, CEA expression, fluorescence, and radioactivity. Twenty-six of 29 tumor samples obtained from 10 patients contained malignant cells. Overall, fluorescence intensity was higher in tumor areas compared to adjacent non-tumor tissue parts (p < 0.001). The average fluorescence tumor-to-background ratio was 11.8 ± 9.1:1. A similar ratio was found in the autoradiographic analyses. Incubation with a non-specific control antibody confirmed that tumor targeting of our tracer was CEA-specific. Our results demonstrate the feasibility of this tracer for multimodal image-guided surgery. Furthermore, this ex vivo incubation method may help to bridge the gap between preclinical research and clinical application of new agents for radioactive, near infrared fluorescence or multimodal imaging studies.


Medullary Pancreatic Carcinoma Due to Somatic POLE Mutation: A Distinctive Pancreatic Carcinoma With Marked Long-Term Survival.

  • Valentyna Kryklyva‎ et al.
  • Pancreas‎
  • 2020‎

Medullary pancreatic carcinoma (MPC) is a rare histological variant of pancreatic ductal adenocarcinoma (PDAC). Because of its rarity, data on the molecular background of MPC are limited. Previous studies have shown that a subset of MPCs is microsatellite instable due to mismatch repair deficiency. Here, we present a unique case of a female patient in her 60s who is a long-term survivor after surgery for pancreatic cancer. The patient had a microsatellite stable MPC with a somatic mutation of the polymerase epsilon gene (POLE). Both microsatellite instable and POLE-mutated cancers are usually associated with high tumor mutational burden and antigen load, resulting in a prominent antitumor immune response and overall better survival. The current case illustrates that, in addition to mismatch repair deficiency, MPC can develop because of a somatic POLE mutation, resulting in a tumor with a high tumor mutational burden and leading to a better prognosis compared with conventional PDAC. This new finding may have important implications in the management of patients with MPC and calls for further studies on the role of POLE in PDAC.


Widespread somatic L1 retrotransposition occurs early during gastrointestinal cancer evolution.

  • Adam D Ewing‎ et al.
  • Genome research‎
  • 2015‎

Somatic L1 retrotransposition events have been shown to occur in epithelial cancers. Here, we attempted to determine how early somatic L1 insertions occurred during the development of gastrointestinal (GI) cancers. Using L1-targeted resequencing (L1-seq), we studied different stages of four colorectal cancers arising from colonic polyps, seven pancreatic carcinomas, as well as seven gastric cancers. Surprisingly, we found somatic L1 insertions not only in all cancer types and metastases but also in colonic adenomas, well-known cancer precursors. Some insertions were also present in low quantities in normal GI tissues, occasionally caught in the act of being clonally fixed in the adjacent tumors. Insertions in adenomas and cancers numbered in the hundreds, and many were present in multiple tumor sections, implying clonal distribution. Our results demonstrate that extensive somatic insertional mutagenesis occurs very early during the development of GI tumors, probably before dysplastic growth.


A monoclonal antibody-GDNF fusion protein is not neuroprotective and is associated with proliferative pancreatic lesions in parkinsonian monkeys.

  • Sachiko Ohshima-Hosoyama‎ et al.
  • PloS one‎
  • 2012‎

Glial cell line derived neurotrophic factor (GDNF) is a neurotrophic factor that has neuroprotective effects in animal models of Parkinson's disease (PD) and has been proposed as a PD therapy. GDNF does not cross the blood brain barrier (BBB), and requires direct intracerebral delivery to be effective. Trojan horse technology, in which GDNF is coupled to a monoclonal antibody (mAb) against the human insulin receptor (HIR), has been proposed to allow GDNF BBB transport (ArmaGen Technologies Inc.). In this study we tested the feasibility of HIRMAb-GDNF to induce neuroprotection in parkinsonian monkeys, as well as its tolerability and safety. Adult rhesus macaques were assessed throughout the study with a clinical rating scale, a computerized fine motor skills task and general health evaluations. Following baseline measurements, the animals received a unilateral intracarotid artery MPTP injection. Seven days later the animals were evaluated, matched according to disability and blindly assigned to receive twice a week i.v. treatments (vehicle, 1 or 5 mg/kg HIRmAb-GDNF) for a period of three months. HIRmAb-GDNF did not improve parkinsonian motor symptoms and induced a dose-dependent hypersensitivity reaction. Quantification of dopaminergic striatal optical density and stereological nigral cell counts did not demonstrate differences between treatment groups. Focal pancreatic acinar to ductular metaplasia (ADM) was noted in four of seven animals treated with 1 mg/kg HIRmAb-GDNF; two of four with ADM also had focal pancreatic intraepithelial neoplasia 1B (PanIN-1B) lesions. Minimal to mild, focal to multifocal, nonsuppurative myocarditis was noted in all animals in the 5 mg/kg treatment group. Our results demonstrate that HIRmAb-GDNF dosing in a monkey model of PD is not an effective neuroprotective strategy and may present serious health risks that should be considered when planning future use of the IR antibody as a carrier, or of any systemic treatment of a GDNF-containing molecule.


Cell of Origin Influences Pancreatic Cancer Subtype.

  • Brittany M Flowers‎ et al.
  • Cancer discovery‎
  • 2021‎

Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease with a 5-year survival rate of approximately 9%. An improved understanding of PDAC initiation and progression is paramount for discovering strategies to better detect and combat this disease. Although transcriptomic analyses have uncovered distinct molecular subtypes of human PDAC, the factors that influence subtype development remain unclear. Here, we interrogate the impact of cell of origin and different Trp53 alleles on tumor evolution, using a panel of tractable genetically engineered mouse models. Oncogenic KRAS expression, coupled with Trp53 deletion or point mutation, drives PDAC from both acinar and ductal cells. Gene-expression analysis reveals further that ductal cell-derived and acinar cell-derived tumor signatures are enriched in basal-like and classical subtypes of human PDAC, respectively. These findings highlight cell of origin as one factor that influences PDAC molecular subtypes and provide insight into the fundamental impact that the very earliest events in carcinogenesis can have on cancer evolution. SIGNIFICANCE: Although human PDAC has been classified into different molecular subtypes, the etiology of these distinct subtypes remains unclear. Using mouse genetics, we reveal that cell of origin is an important determinant of PDAC molecular subtype. Deciphering the biology underlying pancreatic cancer subtypes may reveal meaningful distinctions that could improve clinical intervention.This article is highlighted in the In This Issue feature, p. 521.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: