Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

Increased expression of chemerin in squamous esophageal cancer myofibroblasts and role in recruitment of mesenchymal stromal cells.

  • J Dinesh Kumar‎ et al.
  • PloS one‎
  • 2014‎

Stromal cells such as myofibroblasts influence tumor progression. The mechanisms are unclear but may involve effects on both tumor cells and recruitment of bone marrow-derived mesenchymal stromal cells (MSCs) which then colonize tumors. Using iTRAQ and LC-MS/MS we identified the adipokine, chemerin, as overexpressed in esophageal squamous cancer associated myofibroblasts (CAMs) compared with adjacent tissue myofibroblasts (ATMs). The chemerin receptor, ChemR23, is expressed by MSCs. Conditioned media (CM) from CAMs significantly increased MSC cell migration compared to ATM-CM; the action of CAM-CM was significantly reduced by chemerin-neutralising antibody, pretreatment of CAMs with chemerin siRNA, pretreatment of MSCs with ChemR23 siRNA, and by a ChemR23 receptor antagonist, CCX832. Stimulation of MSCs by chemerin increased phosphorylation of p42/44, p38 and JNK-II kinases and inhibitors of these kinases and PKC reversed chemerin-stimulated MSC migration. Chemerin stimulation of MSCs also induced expression and secretion of macrophage inhibitory factor (MIF) that tended to restrict migratory responses to low concentrations of chemerin but not higher concentrations. In a xenograft model consisting of OE21 esophageal cancer cells and CAMs, homing of MSCs administered i.v. was inhibited by CCX832. Thus, chemerin secreted from esophageal cancer myofibroblasts is a potential chemoattractant for MSCs and its inhibition may delay tumor progression.


High-density real-time PCR-based in vivo toxicogenomic screen to predict organ-specific toxicity.

  • Gabriella Fabian‎ et al.
  • International journal of molecular sciences‎
  • 2011‎

Toxicogenomics, based on the temporal effects of drugs on gene expression, is able to predict toxic effects earlier than traditional technologies by analyzing changes in genomic biomarkers that could precede subsequent protein translation and initiation of histological organ damage. In the present study our objective was to extend in vivo toxicogenomic screening from analyzing one or a few tissues to multiple organs, including heart, kidney, brain, liver and spleen. Nanocapillary quantitative real-time PCR (QRT-PCR) was used in the study, due to its higher throughput, sensitivity and reproducibility, and larger dynamic range compared to DNA microarray technologies. Based on previous data, 56 gene markers were selected coding for proteins with different functions, such as proteins for acute phase response, inflammation, oxidative stress, metabolic processes, heat-shock response, cell cycle/apoptosis regulation and enzymes which are involved in detoxification. Some of the marker genes are specific to certain organs, and some of them are general indicators of toxicity in multiple organs. Utility of the nanocapillary QRT-PCR platform was demonstrated by screening different references, as well as discovery of drug-like compounds for their gene expression profiles in different organs of treated mice in an acute experiment. For each compound, 896 QRT-PCR were done: four organs were used from each of the treated four animals to monitor the relative expression of 56 genes. Based on expression data of the discovery gene set of toxicology biomarkers the cardio- and nephrotoxicity of doxorubicin and sulfasalazin, the hepato- and nephrotoxicity of rotenone, dihydrocoumarin and aniline, and the liver toxicity of 2,4-diaminotoluene could be confirmed. The acute heart and kidney toxicity of the active metabolite SN-38 from its less toxic prodrug, irinotecan could be differentiated, and two novel gene markers for hormone replacement therapy were identified, namely fabp4 and pparg, which were down-regulated by estradiol treatment.


Chemerin acts via CMKLR1 and GPR1 to stimulate migration and invasion of gastric cancer cells: putative role of decreased TIMP-1 and TIMP-2.

  • J Dinesh Kumar‎ et al.
  • Oncotarget‎
  • 2019‎

The chemokine-like peptide, chemerin, stimulates chemotaxis in several cell types. In this study we examined the expression of putative chemerin receptors in gastric cancer and the action of chemerin on cancer cell migration and invasion. Immunohistochemical studies of gastric tumors identified expression of two putative receptors, chemokine-like receptor-1 (CMKLR1) and G-protein coupled receptor 1(GPR1), in cancer cells; there was also some expression in stromal myofibroblasts although generally at a lower intensity. The expression of both receptors was detected in a gastric cancer cell line, AGS; chemerin itself was expressed in cultured gastric cancer myofibroblasts but not AGS cells. Chemerin stimulated (a) morphological transformation of AGS cells characterized by extension of processes and cell scattering, (b) migration in scratch wound assays and (c) both migration and invasion in Boyden chamber chemotaxis assays. These responses were inhibited by two putative receptor antagonists CCX832 and α-NETA. Inhibition of receptor expression by siRNA selectively reduced CMKLR1 or GPR1 and inhibited the action of chemerin indicating that both receptors contributed to the functional response. Using a proteomic approach employing stable isotope dynamic labeling of secretomes (SIDLS) to selectively label secreted proteins, we identified down regulation of tissue inhibitors of metalloproteinease (TIMP)1 and TIMP2 in media in response to chemerin. When cells were treated with chemerin and TIMP1 or TIMP2 the migration response to chemerin was reduced. The data suggest a role for chemerin in promoting the invasion of gastric cancer cells via CMKLR1 and GPR1at least partly by reducing TIMP1 and TIMP2 expression. Chemerin receptor antagonists have potential in inhibiting gastric cancer progression.


Matrix metalloproteinase (MMP)-7 in Barrett's esophagus and esophageal adenocarcinoma: expression, metabolism, and functional significance.

  • Hanan M Garalla‎ et al.
  • Physiological reports‎
  • 2018‎

Matrix metalloproteinase (MMP)-7, unlike many MMPs, is typically expressed in epithelial cells. It has been linked to epithelial responses to infection, injury, and tissue remodeling including the progression of a number of cancers. We have now examined how MMP-7 expression changes in the progression to esophageal adenocarcinoma (EAC), and have studied mechanisms regulating its expression and its functional significance. Immunohistochemistry revealed that MMP-7 was weakly expressed in normal squamous epithelium adjacent to EAC but was abundant in epithelial cells in both preneoplastic lesions of Barrett's esophagus and EAC particularly at the invasive front. In the stroma, putative myofibroblasts expressing MMP-7 were abundant at the invasive front but were scarce or absent in adjacent tissue. Western blot and ELISA revealed high constitutive secretion of proMMP-7 in an EAC cell line (OE33) that was inhibited by the phosphatidylinositol (PI) 3-kinase inhibitor LY294002 but not by inhibitors of protein kinase C, or MAP kinase activation. There was detectable proMMP-7 in cultured esophageal myofibroblasts but it was undetectable in media. Possible metabolism of MMP-7 by myofibroblasts studied by proteomic analysis indicated degradation via extensive endopeptidase, followed by amino- and carboxpeptidase, cleavages. Myofibroblasts exhibited increased migration and invasion in response to conditioned media from OE33 cells that was reduced by MMP-7 knockdown and immunoneutralization. Thus, MMP-7 expression increases at the invasive front in EAC which may be partly attributable to activation of PI 3-kinase. Secreted MMP-7 may modify the tumor microenvironment by stimulating stromal cell migration and invasion.


The role of plasminogen activator inhibitor-1 in gastric mucosal protection.

  • Susan Kenny‎ et al.
  • American journal of physiology. Gastrointestinal and liver physiology‎
  • 2013‎

Gastric mucosal health is maintained in response to potentially damaging luminal factors. Aspirin and nonsteroidal anti-inflammatory drugs (NSAIDs) disrupt protective mechanisms leading to bleeding and ulceration. The plasminogen activator system has been implicated in fibrinolysis following gastric ulceration, and an inhibitor of this system, plasminogen activator inhibitor (PAI)-1, is expressed in gastric epithelial cells. In Helicobacter pylori-negative patients with normal gastric histology taking aspirin or NSAIDs, we found elevated gastric PAI-1 mRNA abundance compared with controls; the increase in patients on aspirin was independent of whether they were also taking proton pump inhibitors. In the same patients, aspirin tended to lower urokinase plasminogen activator mRNA. Immunohistochemistry indicated PAI-1 localization to epithelial cells. In a model system using MKN45 or AGS-GR cells transfected with a PAI-1 promoter-luciferase reporter construct, we found no evidence for upregulation of PAI-1 expression by indomethacin, and, in fact, cyclooxygenase products such as PGE2 and PGI2 weakly stimulated expression. Increased gastric PAI-1 mRNA was also found in mice following gavage with ethanol or indomethacin, but plasma PAI-1 was unaffected. In PAI-1(-/-) mice, gastric hemorrhagic lesions in response to ethanol or indomethacin were increased compared with C57BL/6 mice. In contrast, in PAI-1-H/Kβ mice in which PAI-1 is overexpressed in parietal cells, there were decreased lesions in response to ethanol and indomethacin. Thus, PAI-1 expression is increased in gastric epithelial cells in response to mucosal irritants such as aspirin and NSAIDs probably via an indirect mechanism, and PAI-1 acts as a local autoregulator to minimize mucosal damage.


Elevated Serum Gastrin Is Associated with Melanoma Progression: Putative Role in Increased Migration and Invasion of Melanoma Cells.

  • Akos Janos Varga‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Micro-environmental factors, including stromal and immune cells, cytokines, and circulating hormones are well recognized to determine cancer progression. Melanoma cell growth was recently shown to be suppressed by cholecystokinin/gastrin (CCK) receptor antagonists, and our preliminary data suggested that melanoma patients with Helicobacter gastritis (which is associated with elevated serum gastrin) might have an increased risk of cancer progression. Therefore, in the present study, we examined how gastrin may act on melanoma cells. In 89 melanoma patients, we found a statistically significant association between circulating gastrin concentrations and melanoma thickness and metastasis, which are known risk factors of melanoma progression and prognosis. Immunocytochemistry using a validated antibody confirmed weak to moderate CCK2R expression in both primary malignant melanoma cells and the melanoma cell lines SK-MEL-2 and G361. Furthermore, among the 219 tumors in the Skin Cutaneous Melanoma TCGA Pan-Cancer dataset showing gastrin receptor (CCKBR) expression, significantly higher CCKBR mRNA levels were linked to stage III-IV than stage I-II melanomas. In both cell lines, gastrin increased intracellular calcium levels and stimulated cell migration and invasion through mechanisms inhibited by a CCK2 receptor antagonist. Proteomic studies identified increased MMP-2 and reduced TIMP-3 levels in response to gastrin that were likely to contribute to the increased migration of both cell lines. However, the effects of gastrin on tumor cell invasion were relatively weak in the presence of the extracellular matrix. Nevertheless, dermal fibroblasts/myofibroblasts, known also to express CCK2R, increased gastrin-induced cancer cell invasion. Our data suggest that in a subset of melanoma patients, an elevated serum gastrin concentration is a risk factor for melanoma tumor progression, and that gastrin may act on both melanoma and adjacent stromal cells through CCK2 receptors to promote mechanisms of tumor migration and invasion.


DNAI2 mutations cause primary ciliary dyskinesia with defects in the outer dynein arm.

  • Niki Tomas Loges‎ et al.
  • American journal of human genetics‎
  • 2008‎

Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder characterized by chronic destructive airway disease and randomization of left/right body asymmetry. Males often have reduced fertility due to impaired sperm tail function. The complex PCD phenotype results from dysfunction of cilia of the airways and the embryonic node and the structurally related motile sperm flagella. This is associated with underlying ultrastructural defects that frequently involve the outer dynein arm (ODA) complexes that generate cilia and flagella movement. Applying a positional and functional candidate-gene approach, we identified homozygous loss-of-function DNAI2 mutations (IVS11+1G > A) in four individuals from a family with PCD and ODA defects. Further mutational screening of 105 unrelated PCD families detected two distinct homozygous mutations, including a nonsense (c.787C > T) and a splicing mutation (IVS3-3T > G) resulting in out-of-frame transcripts. Analysis of protein expression of the ODA intermediate chain DNAI2 showed sublocalization throughout respiratory cilia. Electron microscopy showed that mutant respiratory cells from these patients lacked DNAI2 protein expression and exhibited ODA defects. High-resolution immunofluorescence imaging demonstrated absence of the ODA heavy chains DNAH5 and DNAH9 from all DNAI2 mutant ciliary axonemes. In addition, we demonstrated complete or distal absence of DNAI2 from ciliary axonemes in respiratory cells of patients with mutations in genes encoding the ODA chains DNAH5 and DNAI1, respectively. Thus, DNAI2 and DNAH5 mutations affect assembly of proximal and distal ODA complexes, whereas DNAI1 mutations mainly disrupt assembly of proximal ODA complexes.


The role of chemerin and ChemR23 in stimulating the invasion of squamous oesophageal cancer cells.

  • J Dinesh Kumar‎ et al.
  • British journal of cancer‎
  • 2016‎

Stromal cells, including cancer-associated myofibroblasts (CAMs), are recognised to be determinants of cancer progression, but the mechanisms remain uncertain. The chemokine-like protein, chemerin, is upregulated in oesophageal squamous cancer (OSC) CAMs compared with adjacent tissue myofibroblasts (ATMs). In this study, we hypothesised that chemerin stimulates OSC cell invasion.


Vascular mapping of the retroauricular skin - proposal for a posterior superior surgical incision for transcutaneous bone-conduction hearing implants.

  • Adam Perenyi‎ et al.
  • Journal of otolaryngology - head & neck surgery = Le Journal d'oto-rhino-laryngologie et de chirurgie cervico-faciale‎
  • 2017‎

Passive transcutaneous osseointegrated hearing implant systems have become increasingly popular more recently. The area over the implant is vulnerable due to vibration and pressure from the externally worn sound processor. Good perfusion and neural integrity has the potential to reduce complications. The authors' objective was to determine the ideal surgical exposure to maintain perfusion and neural integrity and decrease surgical time as a result of reduced bleeding.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: