Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 67 papers

A robust estimation of exon expression to identify alternative spliced genes applied to human tissues and cancer samples.

  • Alberto Risueño‎ et al.
  • BMC genomics‎
  • 2014‎

Accurate analysis of whole-gene expression and individual-exon expression is essential to characterize different transcript isoforms and identify alternative splicing events in human genes. One of the omic technologies widely used in many studies on human samples are the exon-specific expression microarray platforms.


Prospective identification of resistance mechanisms to HSP90 inhibition in KRAS mutant cancer cells.

  • Arefeh Rouhi‎ et al.
  • Oncotarget‎
  • 2017‎

Inhibition of the HSP90 chaperone results in depletion of many signaling proteins that drive tumorigenesis, such as downstream effectors of KRAS, the most commonly mutated human oncogene. As a consequence, several small-molecule HSP90 inhibitors are being evaluated in clinical trials as anticancer agents. To prospectively identify mechanisms through which HSP90-dependent cancer cells evade pharmacologic HSP90 blockade, we generated multiple mutant KRAS-driven cancer cell lines with acquired resistance to the purine-scaffold HSP90 inhibitor PU-H71. All cell lines retained dependence on HSP90 function, as evidenced by sensitivity to short hairpin RNA-mediated suppression of HSP90AA1 or HSP90AB1 (also called HSP90α and HSP90β, respectively), and exhibited two types of genomic alterations that interfere with the effects of PU-H71 on cell viability and proliferation: (i) a Y142N missense mutation in the ATP-binding domain of HSP90α that co-occurred with amplification of the HSP90AA1 locus, (ii) genomic amplification and overexpression of the ABCB1 gene encoding the MDR1 drug efflux pump. In support of a functional role for these alterations, exogenous expression of HSP90α Y142N conferred PU-H71 resistance to HSP90-dependent cells, and pharmacologic MDR1 inhibition with tariquidar or lowering ABCB1 expression restored sensitivity to PU-H71 in ABCB1-amplified cells. Finally, comparison with structurally distinct HSP90 inhibitors currently in clinical development revealed that PU-H71 resistance could be overcome, in part, by ganetespib (also known as STA9090) but not tanespimycin (also known as 17-AAG). Together, these data identify potential mechanisms of acquired resistance to small molecules targeting HSP90 that may warrant proactive screening for additional HSP90 inhibitors or rational combination therapies.


VENTX induces expansion of primitive erythroid cells and contributes to the development of acute myeloid leukemia in mice.

  • Eva Gentner‎ et al.
  • Oncotarget‎
  • 2016‎

Homeobox genes are key regulators in normal and malignant hematopoiesis. The human Vent-like homeobox gene VENTX, a putative homolog of the Xenopus laevis Xvent-2 gene, was shown to be highly expressed in normal myeloid cells and in patients with acute myeloid leukemia. We now demonstrate that constitutive expression of VENTX suppresses expression of genes responsible for terminal erythroid differentiation in normal CD34+ stem and progenitor cells. Transplantation of bone marrow progenitor cells retrovirally engineered to express VENTX caused massive expansion of primitive erythroid cells and partly acute erythroleukemia in transplanted mice. The leukemogenic potential of VENTX was confirmed in the AML1-ETO transplantation model, as in contrast to AML1-ETO alone co-expression of AML1-ETO and VENTX induced acute myeloid leukemia, partly expressing erythroid markers, in all transplanted mice. VENTX was highly expressed in patients with primary human erythroleukemias and knockdown of VENTX in the erythroleukemic HEL cell line significantly blocked cell growth. In summary, these data indicate that VENTX is able to perturb erythroid differentiation and to contribute to myeloid leukemogenesis when co-expressed with appropriate AML oncogenes and point to its potential significance as a novel therapeutic target in AML.


Smac mimetic induces cell death in a large proportion of primary acute myeloid leukemia samples, which correlates with defined molecular markers.

  • Sonja C Lueck‎ et al.
  • Oncotarget‎
  • 2016‎

Apoptosis is deregulated in most, if not all, cancers, including hematological malignancies. Smac mimetics that antagonize Inhibitor of Apoptosis (IAP) proteins have so far largely been investigated in acute myeloid leukemia (AML) cell lines; however, little is yet known on the therapeutic potential of Smac mimetics in primary AML samples. In this study, we therefore investigated the antileukemic activity of the Smac mimetic BV6 in diagnostic samples of 67 adult AML patients and correlated the response to clinical, cytogenetic and molecular markers and gene expression profiles. Treatment with cytarabine (ara-C) was used as a standard chemotherapeutic agent. Interestingly, about half (51%) of primary AML samples are sensitive to BV6 and 21% intermediate responsive, while 28% are resistant. Notably, 69% of ara-C-resistant samples show a good to fair response to BV6. Furthermore, combination treatment with ara-C and BV6 exerts additive effects in most samples. Whole-genome gene expression profiling identifies cell death, TNFR1 and NF-κB signaling among the top pathways that are activated by BV6 in BV6-sensitive, but not in BV6-resistant cases. Furthermore, sensitivity of primary AML blasts to BV6 correlates with significantly elevated expression levels of TNF and lower levels of XIAP in diagnostic samples, as well as with NPM1 mutation. In a large set of primary AML samples, these data provide novel insights into factors regulating Smac mimetic response in AML and have important implications for the development of Smac mimetic-based therapies and related diagnostics in AML.


The cell fate determinant Llgl1 influences HSC fitness and prognosis in AML.

  • Florian H Heidel‎ et al.
  • The Journal of experimental medicine‎
  • 2013‎

A unique characteristic of hematopoietic stem cells (HSCs) is the ability to self-renew. Several genes and signaling pathways control the fine balance between self-renewal and differentiation in HSCs and potentially also in leukemia stem cells. Recently, studies have shed light on developmental molecules and evolutionarily conserved signals as regulators of stem cells in hematopoiesis and leukemia. In this study, we provide evidence that the cell fate determinant Llgl1 (lethal giant larvae homolog 1) plays an important role in regulation of HSCs. Loss of Llgl1 leads to an increase in HSC numbers that show increased repopulation capacity and competitive advantage after transplantation. This advantage increases upon serial transplantation or when stress is applied to HSCs. Llgl1(-/-) HSCs show increased cycling but neither exhaust nor induce leukemia in recipient mice. Llgl1 inactivation is associated with transcriptional repression of transcription factors such as KLF4 (Krüppel-like factor 4) and EGR1 (early-growth-response 1) that are known inhibitors of HSC self-renewal. Decreased Llgl1 expression in human acute myeloid leukemia (AML) cells is associated with inferior patient survival. Thus, inactivation of Llgl1 enhances HSC self-renewal and fitness and is associated with unfavorable outcome in human AML.


Localization-associated immune phenotypes of clonally expanded tumor-infiltrating T cells and distribution of their target antigens in rectal cancer.

  • Livius Penter‎ et al.
  • Oncoimmunology‎
  • 2019‎

The degree and type of T cell infiltration influence rectal cancer prognosis regardless of classical tumor staging. We asked whether clonal expansion and tumor infiltration are restricted to selected-phenotype T cells; which clones are accessible in peripheral blood; and what the spatial distribution of their target antigens is. From five rectal cancer patients, we isolated paired tumor-infiltrating T cells (TILs) and T cells from unaffected rectum mucosa (TUM) using 13-parameter FACS single cell index sorting. TCRαβ sequences, cytokine, and transcription factor expression were determined with single cell sequencing. TILs and TUM occupied distinct phenotype compartments and clonal expansion predominantly occurred within CD8+ T cells. Expanded TIL clones identified by paired TCRαβ sequencing and exclusively detectable in the tumor showed characteristic PD-1 and TIM-3 expression. TCRβ repertoire sequencing identified 49 out of 149 expanded TIL clones circulating in peripheral blood and 41 (84%) of these were PD-1- TIM-3-. To determine whether clonal expansion of predominantly tumor-infiltrating T cell clones was driven by antigens uniquely presented in tumor tissue, selected TCRs were reconstructed and incubated with cells isolated from corresponding tumor or unaffected mucosa. The majority of clones exclusively detected in the tumor recognized antigen at both sites. In summary, rectal cancer is infiltrated with expanded distinct-phenotype T cell clones that either i) predominantly infiltrate the tumor, ii) predominantly infiltrate the unaffected mucosa, or iii) overlap between tumor, unaffected mucosa, and peripheral blood. However, the target antigens of predominantly tumor-infiltrating TIL clones do not appear to be restricted to tumor tissue.


Analysis of NPM1 splice variants reveals differential expression patterns of prognostic value in acute myeloid leukemia.

  • Malgorzata Zajac‎ et al.
  • Oncotarget‎
  • 2017‎

Mutations of the nucleophosmin-1 (NPM1) gene in cytogenetically normal (CN) acute myeloid leukemia (AML) identify a group of patients with more favorable prognosis. NPM1 encodes three main alternatively spliced isoforms R1(B23.1), R2(B23.2), and R3(B23.3). The expression of splice variants R1, R2 and R3 were higher in AML patients compared to normal cells of healthy volunteers (HVs), although RNA-seq analysis revealed enhanced R2 expression also in less differentiated cells of HVs as well as in AML cells. The variant R2, which lacks exons 11 and 12 coding for the nucleolar localization domain, might behave similar to the mutant form of NPM1 (NPM1mut). In accordance, in CN-AML high R2 expression was associated with favorable impact on outcome. Moreover, functional studies showed nucleolar localization of the eGFP-NPM1 wildtype and cytoplasmic localization of the eGFP-NPM1 mut protein. While the eGFP-NPM1 R2 splice variant localized predominantly in the nucleoplasm, we also could detect cytoplasmic expression for the R2 variant. These results support a unique biological consequence of R2 overexpression and in part explain our clinical observation, where that high R2 variant expression was associated with a better prognosis in CN-AML patients.


Single-cell analysis based dissection of clonality in myelofibrosis.

  • Elena Mylonas‎ et al.
  • Nature communications‎
  • 2020‎

Cancer development is an evolutionary genomic process with parallels to Darwinian selection. It requires acquisition of multiple somatic mutations that collectively cause a malignant phenotype and continuous clonal evolution is often linked to tumor progression. Here, we show the clonal evolution structure in 15 myelofibrosis (MF) patients while receiving treatment with JAK inhibitors (mean follow-up 3.9 years). Whole-exome sequencing at multiple time points reveal acquisition of somatic mutations and copy number aberrations over time. While JAK inhibition therapy does not seem to create a clear evolutionary bottleneck, we observe a more complex clonal architecture over time, and appearance of unrelated clones. Disease progression associates with increased genetic heterogeneity and gain of RAS/RTK pathway mutations. Clonal diversity results in clone-specific expansion within different myeloid cell lineages. Single-cell genotyping of circulating CD34 + progenitor cells allows the reconstruction of MF phylogeny demonstrating loss of heterozygosity and parallel evolution as recurrent events.


Long-term in vitro expansion ensures increased yield of central memory T cells as perspective for manufacturing challenges.

  • Stefanie Herda‎ et al.
  • International journal of cancer‎
  • 2021‎

Adoptive T cell therapy (ATT) has revolutionized the treatment of cancer patients. A sufficient number of functional T cells are indispensable for ATT efficacy; however, several ATT dropouts have been reported due to T cell expansion failure or lack of T cell persistence in vivo. With the aim of providing ATT also to those patients experiencing insufficient T cell manufacturing via standard protocol, we evaluated if minimally manipulative prolongation of in vitro expansion (long-term [LT] >3 weeks with IL-7 and IL-15 cytokines) could result in enhanced T cell yield with preserved T cell functionality. The extended expansion resulted in a 39-fold increase of murine CD8+ T central memory cells (Tcm). LT expanded CD8+ and CD4+ Tcm cells retained a gene expression profile related to Tcm and T memory stem cells (Tscm). In vivo transfer of LT expanded Tcm revealed persistence and antitumor capacity. We confirmed our in vitro findings on human T cells, on healthy donors and diffuse large B cell lymphoma patients, undergoing salvage therapy. Our study demonstrates the feasibility of an extended T cell expansion as a practicable alternative for patients with insufficient numbers of T cells after the standard manufacturing process thereby increasing ATT accessibility.


Immune phenotypes and checkpoint molecule expression of clonally expanded lymph node-infiltrating T cells in classical Hodgkin lymphoma.

  • Alexej Ballhausen‎ et al.
  • Cancer immunology, immunotherapy : CII‎
  • 2023‎

Lymph node-infiltrating T cells have been of particular interest in classical Hodgkin lymphoma (cHL). High rates of complete therapeutic responses to antibody-mediated immune checkpoint blockade, even in relapsed/refractory patients, suggest the existence of a T cell-dominated, antigen-experienced, functionally inhibited and lymphoma-directed immune microenvironment. We asked whether clonally expanded T cells (1) were detectable in cHL lymph nodes, (2) showed characteristic immune phenotypes, and (3) were inhibited by immune checkpoint molecule expression. We applied high-dimensional FACS index sorting and single cell T cell receptor αβ sequencing to lymph node-infiltrating T cells from 10 treatment-naïve patients. T cells were predominantly CD4+ and showed memory differentiation. Expression of classical immune checkpoint molecules (CTLA-4, PD-1, TIM-3) was generally low (< 12.0% of T cells) and not different between CD4+ and CD8+ T cells. Degrees of clonal T cell expansion varied between patients (range: 1-18 expanded clones per patient) and was almost exclusively restricted to CD8+ T cells. Clonally expanded T cells showed non-naïve phenotypes and low checkpoint molecule expression similar to non-expanded T cells. Our data suggest that the therapeutic effects of immune checkpoint blockade require mechanisms in addition to dis-inhibition of pre-existing lymphoma-directed T cell responses. Future studies on immune checkpoint blockade-associated effects will identify molecular T cell targets, address dynamic aspects of cell compositions over time, and extend their focus beyond lymph node-infiltrating T cells.


Immune Phenotypes and Target Antigens of Clonally Expanded Bone Marrow T Cells in Treatment-Naïve Multiple Myeloma.

  • Carlotta Welters‎ et al.
  • Cancer immunology research‎
  • 2022‎

Multiple myeloma is a hematologic malignancy of monoclonal plasma cells that accumulate in the bone marrow. Despite their clinical and pathophysiologic relevance, the roles of bone marrow-infiltrating T cells in treatment-naïve patients are incompletely understood. We investigated whether clonally expanded T cells (i) were detectable in multiple myeloma bone marrow, (ii) showed characteristic immune phenotypes, and (iii) whether dominant clones recognized antigens selectively presented on multiple myeloma cells. Single-cell index sorting and T-cell receptor (TCR) αβ sequencing of bone marrow T cells from 13 treatment-naïve patients showed dominant clonal expansion within CD8+ cytolytic effector compartments, and only a minority of expanded T-cell clones expressed the classic immune-checkpoint molecules PD-1, CTLA-4, or TIM-3. To identify their molecular targets, TCRs of 68 dominant bone marrow clones from five selected patients were reexpressed and incubated with multiple myeloma and non-multiple myeloma cells from corresponding patients. Only 1 of 68 TCRs recognized antigen presented on multiple myeloma cells. This TCR was HLA-C-restricted, self-peptide-specific and could be activated by multiple myeloma cells of multiple patients. The remaining dominant T-cell clones did not recognize multiple myeloma cells and were, in part, specific for antigens associated with chronic viral infections. In conclusion, we showed that dominant bone marrow T-cell clones in treatment-naïve patients rarely recognize antigens presented on multiple myeloma cells and exhibit low expression of classic immune-checkpoint molecules. Our data provide experimental context for experiences from clinical immune-checkpoint inhibition trials and will inform future T cell-dependent therapeutic strategies.


TIGIT blockade repolarizes AML-associated TIGIT+ M2 macrophages to an M1 phenotype and increases CD47-mediated phagocytosis.

  • Franziska Brauneck‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2022‎

Leukemia-associated macrophages (LAMs) represent an important cell population within the tumor microenvironment, but little is known about the phenotype, function, and plasticity of these cells. The present study provides an extensive characterization of macrophages in patients with acute myeloid leukemia (AML).


Imetelstat-mediated alterations in fatty acid metabolism to induce ferroptosis as a therapeutic strategy for acute myeloid leukemia.

  • Claudia Bruedigam‎ et al.
  • Nature cancer‎
  • 2024‎

Telomerase enables replicative immortality in most cancers including acute myeloid leukemia (AML). Imetelstat is a first-in-class telomerase inhibitor with clinical efficacy in myelofibrosis and myelodysplastic syndromes. Here, we develop an AML patient-derived xenograft resource and perform integrated genomics, transcriptomics and lipidomics analyses combined with functional genetics to identify key mediators of imetelstat efficacy. In a randomized phase II-like preclinical trial in patient-derived xenografts, imetelstat effectively diminishes AML burden and preferentially targets subgroups containing mutant NRAS and oxidative stress-associated gene expression signatures. Unbiased, genome-wide CRISPR/Cas9 editing identifies ferroptosis regulators as key mediators of imetelstat efficacy. Imetelstat promotes the formation of polyunsaturated fatty acid-containing phospholipids, causing excessive levels of lipid peroxidation and oxidative stress. Pharmacological inhibition of ferroptosis diminishes imetelstat efficacy. We leverage these mechanistic insights to develop an optimized therapeutic strategy using oxidative stress-inducing chemotherapy to sensitize patient samples to imetelstat causing substantial disease control in AML.


Clinical impact of the genomic landscape and leukemogenic trajectories in non-intensively treated elderly acute myeloid leukemia patients.

  • Ekaterina Jahn‎ et al.
  • Leukemia‎
  • 2023‎

To characterize the genomic landscape and leukemogenic pathways of older, newly diagnosed, non-intensively treated patients with AML and to study the clinical implications, comprehensive genetics analyses were performed including targeted DNA sequencing of 263 genes in 604 patients treated in a prospective Phase III clinical trial. Leukemic trajectories were delineated using oncogenetic tree modeling and hierarchical clustering, and prognostic groups were derived from multivariable Cox regression models. Clonal hematopoiesis-related genes (ASXL1, TET2, SRSF2, DNMT3A) were most frequently mutated. The oncogenetic modeling algorithm produced a tree with five branches with ASXL1, DDX41, DNMT3A, TET2, and TP53 emanating from the root suggesting leukemia-initiating events which gave rise to further subbranches with distinct subclones. Unsupervised clustering mirrored the genetic groups identified by the tree model. Multivariable analysis identified FLT3 internal tandem duplications (ITD), SRSF2, and TP53 mutations as poor prognostic factors, while DDX41 mutations exerted an exceptionally favorable effect. Subsequent backwards elimination based on the Akaike information criterion delineated three genetic risk groups: DDX41 mutations (favorable-risk), DDX41wildtype/FLT3-ITDneg/TP53wildtype (intermediate-risk), and FLT3-ITD or TP53 mutations (high-risk). Our data identified distinct trajectories of leukemia development in older AML patients and provide a basis for a clinically meaningful genetic outcome stratification for patients receiving less intensive therapies.


Telomerase inhibition effectively targets mouse and human AML stem cells and delays relapse following chemotherapy.

  • Claudia Bruedigam‎ et al.
  • Cell stem cell‎
  • 2014‎

Acute myeloid leukemia (AML) is an aggressive and lethal blood cancer maintained by rare populations of leukemia stem cells (LSCs). Selective targeting of LSCs is a promising approach for treating AML and preventing relapse following chemotherapy, and developing such therapeutic modalities is a key priority. Here, we show that targeting telomerase activity eradicates AML LSCs. Genetic deletion of the telomerase subunit Terc in a retroviral mouse AML model induces cell-cycle arrest and apoptosis of LSCs, and depletion of telomerase-deficient LSCs is partially rescued by p53 knockdown. Murine Terc(-/-) LSCs express a specific gene expression signature that can be identified in human AML patient cohorts and is positively correlated with patient survival following chemotherapy. In xenografts of primary human AML, genetic or pharmacological inhibition of telomerase targets LSCs, impairs leukemia progression, and delays relapse following chemotherapy. Altogether, these results establish telomerase inhibition as an effective strategy for eliminating AML LSCs.


Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia.

  • Sheng Li‎ et al.
  • Nature medicine‎
  • 2016‎

Genetic heterogeneity contributes to clinical outcome and progression of most tumors, but little is known about allelic diversity for epigenetic compartments, and almost no data exist for acute myeloid leukemia (AML). We examined epigenetic heterogeneity as assessed by cytosine methylation within defined genomic loci with four CpGs (epialleles), somatic mutations, and transcriptomes of AML patient samples at serial time points. We observed that epigenetic allele burden is linked to inferior outcome and varies considerably during disease progression. Epigenetic and genetic allelic burden and patterning followed different patterns and kinetics during disease progression. We observed a subset of AMLs with high epiallele and low somatic mutation burden at diagnosis, a subset with high somatic mutation and lower epiallele burdens at diagnosis, and a subset with a mixed profile, suggesting distinct modes of tumor heterogeneity. Genes linked to promoter-associated epiallele shifts during tumor progression showed increased single-cell transcriptional variance and differential expression, suggesting functional impact on gene regulation. Thus, genetic and epigenetic heterogeneity can occur with distinct kinetics likely to affect the biological and clinical features of tumors.


CXXC5 (retinoid-inducible nuclear factor, RINF) is a potential therapeutic target in high-risk human acute myeloid leukemia.

  • Audrey Astori‎ et al.
  • Oncotarget‎
  • 2013‎

The retinoid-responsive gene CXXC5 localizes to the 5q31.2 chromosomal region and encodes a retinoid-inducible nuclear factor (RINF) that seems important during normal myelopoiesis. We investigated CXXC5/RINF expression in primary human acute myeloid leukemia (AML) cells derived from 594 patients, and a wide variation in CXXC5/RINF mRNA levels was observed both in the immature leukemic myeloblasts and in immature acute lymphoblastic leukemia cells. Furthermore, patients with low-risk cytogenetic abnormalities showed significantly lower levels compared to patients with high-risk abnormalities, and high RINF/CXXC5/ mRNA levels were associated with decreased overall survival for patients receiving intensive chemotherapy for newly diagnosed AML. This association with prognosis was seen both when investigating (i) an unselected patient population as well as for patients with (ii) normal cytogenetic and (iii) core-binding factor AML. CXXC5/RINF knockdown in AML cell lines caused increased susceptibility to chemotherapy-induced apoptosis, and regulation of apoptosis also seemed to differ between primary human AML cells with high and low RINF expression. The association with adverse prognosis together with the antiapoptotic effect of CXXC5/RINF suggests that targeting of CXXC5/RINF should be considered as a possible therapeutic strategy, especially in high-risk patients who show increased expression in AML cells compared with normal hematopoietic cells.


Haploinsufficiency of ETV6 and CDKN1B in patients with acute myeloid leukemia and complex karyotype.

  • Simone Feurstein‎ et al.
  • BMC genomics‎
  • 2014‎

Acute myeloid leukemia with complex karyotype (CK-AML) is a distinct biological entity associated with a very poor outcome. Since complex karyotypes frequently contain deletions of the chromosomal region 12p13 encompassing the tumor suppressor genes ETV6 and CDKN1B, we aimed to unravel their modes of inactivation in CK-AML.


Genetic and pharmacologic inhibition of β-catenin targets imatinib-resistant leukemia stem cells in CML.

  • Florian H Heidel‎ et al.
  • Cell stem cell‎
  • 2012‎

A key characteristic of hematopoietic stem cells (HSCs) is the ability to self-renew. Genetic deletion of β-catenin during fetal HSC development leads to impairment of self-renewal while β-catenin is dispensable in fully developed adult HSCs. Whether β-catenin is required for maintenance of fully developed CML leukemia stem cells (LSCs) is unknown. Here, we use a conditional mouse model to show that deletion of β-catenin after CML initiation does not lead to a significant increase in survival. However, deletion of β-catenin synergizes with imatinib (IM) to delay disease recurrence after imatinib discontinuation and to abrogate CML stem cells. These effects can be mimicked by pharmacologic inhibition of β-catenin via modulation of prostaglandin signaling. Treatment with the cyclooxygenase inhibitor indomethacin reduces β-catenin levels and leads to a reduction in LSCs. In conclusion, inhibiting β-catenin by genetic inactivation or pharmacologic modulation is an effective combination therapy with imatinib and targets CML stem cells.


Functional characterization of BRCC3 mutations in acute myeloid leukemia with t(8;21)(q22;q22.1).

  • Tatjana Meyer‎ et al.
  • Leukemia‎
  • 2020‎

BRCA1/BRCA2-containing complex 3 (BRCC3) is a Lysine 63-specific deubiquitinating enzyme (DUB) involved in inflammasome activity, interferon signaling, and DNA damage repair. Recurrent mutations in BRCC3 have been reported in myelodysplastic syndromes (MDS) but not in de novo AML. In one of our recent studies, we found BRCC3 mutations selectively in 9/191 (4.7%) cases with t(8;21)(q22;q22.1) AML but not in 160 cases of inv(16)(p13.1q22) AML. Clinically, AML patients with BRCC3 mutations had an excellent outcome with an event-free survival of 100%. Inactivation of BRCC3 by CRISPR/Cas9 resulted in improved proliferation in t(8;21)(q22;q22.1) positive AML cell lines and together with expression of AML1-ETO induced unlimited self-renewal in mouse hematopoietic progenitor cells in vitro. Mutations in BRCC3 abrogated its deubiquitinating activity on IFNAR1 resulting in an impaired interferon response and led to diminished inflammasome activity. In addition, BRCC3 inactivation increased release of several cytokines including G-CSF which enhanced proliferation of AML cell lines with t(8;21)(q22;q22.1). Cell lines and primary mouse cells with inactivation of BRCC3 had a higher sensitivity to doxorubicin due to an impaired DNA damage response providing a possible explanation for the favorable outcome of BRCC3 mutated AML patients.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: