Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Shared Components of the FRQ-Less Oscillator and TOR Pathway Maintain Rhythmicity in Neurospora.

  • Rosa Eskandari‎ et al.
  • Journal of biological rhythms‎
  • 2021‎

Molecular models for the endogenous oscillators that drive circadian rhythms in eukaryotes center on rhythmic transcription/translation of a small number of "clock genes." Although substantial evidence supports the concept that negative and positive transcription/translation feedback loops (TTFLs) are responsible for regulating the expression of these clock genes, certain rhythms in the filamentous fungus Neurospora crassa continue even when clock genes (frq, wc-1, and wc-2) are not rhythmically expressed. Identification of the rhythmic processes operating outside of the TTFL has been a major unresolved area in circadian biology. Our lab previously identified a mutation (vta) that abolishes FRQ-less rhythmicity of the conidiation rhythm and also affects rhythmicity when FRQ is functional. Further studies identified the vta gene product as a component of the TOR (Target of Rapamycin) nutrient-sensing pathway that is conserved in eukaryotes. We now report the discovery of TOR pathway components including GTR2 (homologous to the yeast protein Gtr2, and RAG C/D in mammals) as binding partners of VTA through co-immunoprecipitation (IP) and mass spectrometry analysis using a VTA-FLAG strain. Reciprocal IP with GTR2-FLAG found VTA as a binding partner. A Δgtr2 strain was deficient in growth responses to amino acids. Free-running conidiation rhythms in a FRQ-less strain were abolished in Δgtr2. Entrainment of a FRQ-less strain to cycles of heat pulses demonstrated that Δgtr2 is defective in entrainment. In all of these assays, Δgtr2 is similar to Δvta. In addition, expression of GTR2 protein was found to be rhythmic across two circadian cycles, and functional VTA was required for GTR2 rhythmicity. FRQ protein exhibited the expected rhythm in the presence of GTR2 but the rhythmic level of FRQ dampened in the absence of GTR2. These results establish association of VTA with GTR2, and their role in maintaining functional circadian rhythms through the TOR pathway.


A component of the TOR (Target Of Rapamycin) nutrient-sensing pathway plays a role in circadian rhythmicity in Neurospora crassa.

  • Lalanthi Ratnayake‎ et al.
  • PLoS genetics‎
  • 2018‎

The TOR (Target of Rapamycin) pathway is a highly-conserved signaling pathway in eukaryotes that regulates cellular growth and stress responses. The cellular response to amino acids or carbon sources such as glucose requires anchoring of the TOR kinase complex to the lysosomal/vacuolar membrane by the Ragulator (mammals) or EGO (yeast) protein complex. Here we report a connection between the TOR pathway and circadian (daily) rhythmicity. The molecular mechanism of circadian rhythmicity in all eukaryotes has long been thought to be transcription/translation feedback loops (TTFLs). In the model eukaryote Neurospora crassa, a TTFL including FRQ (frequency) and WCC (white collar complex) has been intensively studied. However, it is also well-known that rhythmicity can be seen in the absence of TTFL functioning. We previously isolated uv90 as a mutation that compromises FRQ-less rhythms and also damps the circadian oscillator when FRQ is present. We have now mapped the uv90 gene and identified it as NCU05950, homologous to the TOR pathway proteins EGO1 (yeast) and LAMTOR1 (mammals), and we have named the N. crassa protein VTA (vacuolar TOR-associated protein). The protein is anchored to the outer vacuolar membrane and deletion of putative acylation sites destroys this localization as well as the protein's function in rhythmicity. A deletion of VTA is compromised in its growth responses to amino acids and glucose. We conclude that a key protein in the complex that anchors TOR to the vacuole plays a role in maintaining circadian (daily) rhythmicity. Our results establish a connection between the TOR pathway and circadian rhythms and point towards a network integrating metabolism and the circadian system.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: