Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 63 papers

Mitochondrial dysfunction in some triple-negative breast cancer cell lines: role of mTOR pathway and therapeutic potential.

  • Hélène Pelicano‎ et al.
  • Breast cancer research : BCR‎
  • 2014‎

Triple-negative breast cancer (TNBC) is a subtype of highly malignant breast cancer with poor prognosis. TNBC is not amenable to endocrine therapy and often exhibit resistance to current chemotherapeutic agents, therefore, further understanding of the biological properties of these cancer cells and development of effective therapeutic approaches are urgently needed.


Comparison of molecular subtype distribution in triple-negative inflammatory and non-inflammatory breast cancers.

  • Hiroko Masuda‎ et al.
  • Breast cancer research : BCR‎
  • 2013‎

Because of its high rate of metastasis, inflammatory breast cancer (IBC) has a poor prognosis compared with non-inflammatory types of breast cancer (non-IBC). In a recent study, Lehmann and colleagues identified seven subtypes of triple-negative breast cancer (TNBC). We hypothesized that the distribution of TNBC subtypes differs between TN-IBC and TN-non-IBC. We determined the subtypes and compared clinical outcomes by subtype in TN-IBC and TN-non-IBC patients.


Novel functional assay for spindle-assembly checkpoint by cyclin-dependent kinase activity to predict taxane chemosensitivity in breast tumor patient.

  • Yasuhiro Torikoshi‎ et al.
  • Journal of Cancer‎
  • 2013‎

Taxanes are among the drugs most commonly used for preoperative chemotherapy for breast cancer. Taxanes induce mitotic arrest and subsequent apoptosis. The spindle-assembly checkpoint (SAC) is known to be activated during mitosis, along with cyclin-dependent kinase-1 (CDK1), and is required for taxane-induced cell death. We hypothesized that CDK1 activity predicts response to taxane-containing chemotherapy. This study included breast cancer patients who received preoperative chemotherapy- taxane-containing treatment followed by anthracycline-based treatment-and then underwent surgery. Before starting taxane-containing chemotherapy, patients underwent fine-needle aspiration biopsy, and the biopsy samples were incubated in paclitaxel solution to measure CDK activity. Clinical were evaluated after taxane therapy, and pathological resposes were evaluated after completion of all preoperative chemotherapy. Thirty five patients were eligible for analysis of clinical response to taxane-containing therapy. Twenty-six patients had taxane-sensitive and 9 taxane-resistant tumors. Using a cut-off of CDK activity determined by the ROC analysis, patients were classified into SAC function and dysfunction groups. Univariate logistic regression analysis with clinicopathologic parameters showed that only CDK-based SAC functionality was significantly correlated with clinical response (P =0.017). No significant correlation was observed between SAC functionality and pathologic response. CDK-based SAC functionality significantly predicted clinical response (P =.0072, overall agreement = 71.4%), and this is a unique mechanism-based marker for predicting taxane chemosensitivity. Further, large prospective study is needed to determine CDK-based SAC functionality could be developed as a predictive biomarker.


Structural insights into POT1-TPP1 interaction and POT1 C-terminal mutations in human cancer.

  • Cong Chen‎ et al.
  • Nature communications‎
  • 2017‎

Mammalian shelterin proteins POT1 and TPP1 form a stable heterodimer that protects chromosome ends and regulates telomerase-mediated telomere extension. However, how POT1 interacts with TPP1 remains unknown. Here we present the crystal structure of the C-terminal portion of human POT1 (POT1C) complexed with the POT1-binding motif of TPP1. The structure shows that POT1C contains two domains, a third OB fold and a Holliday junction resolvase-like domain. Both domains are essential for binding to TPP1. Notably, unlike the heart-shaped structure of ciliated protozoan Oxytricha nova TEBPα-β complex, POT1-TPP1 adopts an elongated V-shaped conformation. In addition, we identify several missense mutations in human cancers that disrupt the POT1C-TPP1 interaction, resulting in POT1 instability. POT1C mutants that bind TPP1 localize to telomeres but fail to repress a DNA damage response and inappropriate repair by A-NHEJ. Our results reveal that POT1 C terminus is essential to prevent initiation of genome instability permissive for tumorigenesis.


An integrative bioinformatics approach reveals coding and non-coding gene variants associated with gene expression profiles and outcome in breast cancer molecular subtypes.

  • Balázs Győrffy‎ et al.
  • British journal of cancer‎
  • 2018‎

Sequence variations in coding and non-coding regions of the genome can affect gene expression and signalling pathways, which in turn may influence disease outcome.


CD68, CD163, and matrix metalloproteinase 9 (MMP-9) co-localization in breast tumor microenvironment predicts survival differently in ER-positive and -negative cancers.

  • Vasiliki Pelekanou‎ et al.
  • Breast cancer research : BCR‎
  • 2018‎

The role of tumor-associated macrophages (TAMs) in the cancer immune landscape and their potential as treatment targets or modulators of response to treatment are gaining increasing interest. TAMs display high molecular and functional complexity. Therefore their objective assessment as breast cancer biomarkers is critical. The aims of this study were to objectively determine the in situ expression and significance of TAM biomarkers (CD68, CD163, and MMP-9) in breast cancer and to identify subclasses of patients who could benefit from TAM-targeting therapies.


Tumor-Specific Major Histocompatibility-II Expression Predicts Benefit to Anti-PD-1/L1 Therapy in Patients With HER2-Negative Primary Breast Cancer.

  • Paula I Gonzalez-Ericsson‎ et al.
  • Clinical cancer research : an official journal of the American Association for Cancer Research‎
  • 2021‎

Immunotherapies targeting PD-1/L1 enhance pathologic complete response (pCR) rates when added to standard neoadjuvant chemotherapy (NAC) regimens in early-stage triple-negative, and possibly high-risk estrogen receptor-positive breast cancer. However, immunotherapy has been associated with significant toxicity, and most patients treated with NAC do not require immunotherapy to achieve pCR. Biomarkers discerning patients benefitting from the addition of immunotherapy from those who would achieve pCR to NAC alone are clearly needed. In this study, we tested the ability of MHC-II expression on tumor cells, to predict immunotherapy-specific benefit in the neoadjuvant breast cancer setting.


Copy Number Aberration Analysis to Predict Response to Neoadjuvant Anti-HER2 Therapy: Results from the NeoALTTO Phase III Clinical Trial.

  • David Venet‎ et al.
  • Clinical cancer research : an official journal of the American Association for Cancer Research‎
  • 2021‎

The heterogeneity of response to anti-HER2 agents represents a major challenge in patients with HER2-positive breast cancer. To better understand the sensitivity and resistance to trastuzumab and lapatinib, we investigated the role of copy number aberrations (CNA) in predicting pathologic complete response (pCR) and survival outcomes in the NeoALTTO trial.


Network propagation-based prioritization of long tail genes in 17 cancer types.

  • Hussein Mohsen‎ et al.
  • Genome biology‎
  • 2021‎

The diversity of genomic alterations in cancer poses challenges to fully understanding the etiologies of the disease. Recent interest in infrequent mutations, in genes that reside in the "long tail" of the mutational distribution, uncovered new genes with significant implications in cancer development. The study of cancer-relevant genes often requires integrative approaches pooling together multiple types of biological data. Network propagation methods demonstrate high efficacy in achieving this integration. Yet, the majority of these methods focus their assessment on detecting known cancer genes or identifying altered subnetworks. In this paper, we introduce a network propagation approach that entirely focuses on prioritizing long tail genes with potential functional impact on cancer development.


Predictive Markers of Response to Neoadjuvant Durvalumab with Nab-Paclitaxel and Dose-Dense Doxorubicin/Cyclophosphamide in Basal-Like Triple-Negative Breast Cancer.

  • Kim R M Blenman‎ et al.
  • Clinical cancer research : an official journal of the American Association for Cancer Research‎
  • 2022‎

We examined gene expression, germline variant, and somatic mutation features associated with pathologic response to neoadjuvant durvalumab plus chemotherapy in basal-like triple-negative breast cancer (bTNBC).


Immunological and clinicopathological features predict HER2-positive breast cancer prognosis in the neoadjuvant NeoALTTO and CALGB 40601 randomized trials.

  • Mattia Rediti‎ et al.
  • Nature communications‎
  • 2023‎

The identification of prognostic markers in patients receiving neoadjuvant therapy is crucial for treatment optimization in HER2-positive breast cancer, with the immune microenvironment being a key factor. Here, we investigate the complexity of B and T cell receptor (BCR and TCR) repertoires in the context of two phase III trials, NeoALTTO and CALGB 40601, evaluating neoadjuvant paclitaxel with trastuzumab and/or lapatinib in women with HER2-positive breast cancer. BCR features, particularly the number of reads and clones, evenness and Gini index, are heterogeneous according to hormone receptor status and PAM50 subtypes. Moreover, BCR measures describing clonal expansion, namely evenness and Gini index, are independent prognostic factors. We present a model developed in NeoALTTO and validated in CALGB 40601 that can predict event-free survival (EFS) by integrating hormone receptor and clinical nodal status, breast pathological complete response (pCR), stromal tumor-infiltrating lymphocyte levels (%) and BCR repertoire evenness. A prognostic score derived from the model and including those variables, HER2-EveNT, allows the identification of patients with 5-year EFS > 90%, and, in those not achieving pCR, of a subgroup of immune-enriched tumors with an excellent outcome despite residual disease.


Functional proteomics can define prognosis and predict pathologic complete response in patients with breast cancer.

  • Ana M Gonzalez-Angulo‎ et al.
  • Clinical proteomics‎
  • 2011‎

To determine whether functional proteomics improves breast cancer classification and prognostication and can predict pathological complete response (pCR) in patients receiving neoadjuvant taxane and anthracycline-taxane-based systemic therapy (NST).


Effects of obesity on transcriptomic changes and cancer hallmarks in estrogen receptor-positive breast cancer.

  • Enrique Fuentes-Mattei‎ et al.
  • Journal of the National Cancer Institute‎
  • 2014‎

Obesity increases the risk of cancer death among postmenopausal women with estrogen receptor-positive (ER+) breast cancer, but the direct evidence for the mechanisms is lacking. The purpose of this study is to demonstrate direct evidence for the mechanisms mediating this epidemiologic phenomenon.


Functional germline variants as potential co-oncogenes.

  • Divyansh Agarwal‎ et al.
  • NPJ breast cancer‎
  • 2017‎

Germline variants that affect the expression or function of proteins contribute to phenotypic variation in humans and likely determine individual characteristics and susceptibility to diseases including cancer. A number of high penetrance germline variants that increase cancer risk have been identified and studied, but germline functional polymorphisms are not typically considered in the context of cancer biology, where the focus is primarily on somatic mutations. Yet, there is evidence from familial cancers indicating that specific cancer subtypes tend to arise in carriers of high-risk germline variants (e.g., triple negative breast cancers in mutated BRCA carriers), which suggests that pre-existing germline variants may determine which complementary somatic driver mutations are needed to drive tumorigenesis. Recent genome sequencing studies of large breast cancer cohorts reported only a handful of highly recurrent driver mutations, suggesting that different oncogenic events drive individual cancers. Here, we propose that germline polymorphisms can function as oncogenic modifiers, or co-oncogenes, and these determine what complementary subsequent somatic events are required for full malignant transformation. Therefore, we propose that germline aberrations should be considered together with somatic mutations to determine what genes drive cancer and how they may be targeted.


Homogeneous datasets of triple negative breast cancers enable the identification of novel prognostic and predictive signatures.

  • Thomas Karn‎ et al.
  • PloS one‎
  • 2011‎

Current prognostic gene signatures for breast cancer mainly reflect proliferation status and have limited value in triple-negative (TNBC) cancers. The identification of prognostic signatures from TNBC cohorts was limited in the past due to small sample sizes.


Cell line derived multi-gene predictor of pathologic response to neoadjuvant chemotherapy in breast cancer: a validation study on US Oncology 02-103 clinical trial.

  • Kui Shen‎ et al.
  • BMC medical genomics‎
  • 2012‎

The purpose of this study is to assess the predictive accuracy of a multi-gene predictor of response to docetaxel, 5-fluorouracil, epirubicin and cyclophosphamide combination chemotherapy on gene expression data from patients who received these drugs as neoadjuvant treatment.


Reproducibility of Variant Calls in Replicate Next Generation Sequencing Experiments.

  • Yuan Qi‎ et al.
  • PloS one‎
  • 2015‎

Nucleotide alterations detected by next generation sequencing are not always true biological changes but could represent sequencing errors. Even highly accurate methods can yield substantial error rates when applied to millions of nucleotides. In this study, we examined the reproducibility of nucleotide variant calls in replicate sequencing experiments of the same genomic DNA. We performed targeted sequencing of all known human protein kinase genes (kinome) (~3.2 Mb) using the SOLiD v4 platform. Seventeen breast cancer samples were sequenced in duplicate (n=14) or triplicate (n=3) to assess concordance of all calls and single nucleotide variant (SNV) calls. The concordance rates over the entire sequenced region were >99.99%, while the concordance rates for SNVs were 54.3-75.5%. There was substantial variation in basic sequencing metrics from experiment to experiment. The type of nucleotide substitution and genomic location of the variant had little impact on concordance but concordance increased with coverage level, variant allele count (VAC), variant allele frequency (VAF), variant allele quality and p-value of SNV-call. The most important determinants of concordance were VAC and VAF. Even using the highest stringency of QC metrics the reproducibility of SNV calls was around 80% suggesting that erroneous variant calling can be as high as 20-40% in a single experiment. The sequence data have been deposited into the European Genome-phenome Archive (EGA) with accession number EGAS00001000826.


Characterization of DNA variants in the human kinome in breast cancer.

  • Divyansh Agarwal‎ et al.
  • Scientific reports‎
  • 2015‎

Kinases play a key role in cancer biology, and serve as potential clinically useful targets for designing cancer therapies. We examined nucleic acid variations in the human kinome and several known cancer-related genes in breast cancer. DNA was extracted from fine needle biopsies of 73 primary breast cancers and 19 metastatic lesions. Targeted sequencing of 518 kinases and 68 additional cancer related genes was performed using the SOLiD sequencing platform. We detected 1561 unique, non-synonymous variants in kinase genes in the 92 cases, and 74 unique variants in 43 kinases that were predicted to have major functional impact on the protein. Three kinase groups--CMGC, STE and TKL--showed greater mutational load in metastatic compared to primary cancer samples, however, after correction for multiple testing the difference was significant only for the TKL group (P = 0.04). We also observed that a higher proportion of histologic grade 1 and 2 cases had high functional impact variants in the SCYL2 gene compared with grade 3 cases. Our findings indicate that individual breast cancers harbor a substantial number of potentially functionally important nucleotide variations in kinase genes, most of which are present in unique combinations and include both somatic and germline functional variants.


Comparison of PD-L1 protein expression between primary tumors and metastatic lesions in triple negative breast cancers.

  • Mariya Rozenblit‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2020‎

Programmed Death Ligand 1 (PD-L1) positivity rates differ between different metastatic sites and the primary tumor. Understanding PD-L1 expression characteristics could guide biopsy procedures and motivate research to better understand site-specific differences in the tumor microenvironment. The purpose of this study was to compare PD-L1 positivity on immune cells and tumor cells in primary and metastatic triple negative breast cancer (TNBC) tumors. Retrospective study utilizing the PD-L1 database of Foundation Medicine containing the SP142 companion diagnostic immunohistochemistry assay (SP142 CDx) and Food and Drug Administration guidelines for scoring. 340 TNBC cases (179 primary tumors and 161 unmatched metastatic lesions) were evaluated. The primary outcome measures were PD-L1 positivity rates in immune cells and tumor cells. χ2 test was used for comparisons. Spearman's correlation coefficient was used for correlations. More primary tumors were positive for PD-L1 expression on immune cells than metastatic lesions (114 (63.7%) vs 68 (42.2%), p<0.0001). This was driven by the lower PD-L1 positivity rates in skin (23.8%, 95% CI: 8.22% to 47.2%), liver (17.4%, 95% CI: 5.00% to 38.8%) and bone (16.7%, 95% CI: 2.10% to 48.4%) metastases. Lung (68.8%, 95% CI: 41.3% to 90.0%), soft tissues (65.2%, 95% CI: 42.7% to 83.6%) and lymph nodes (51.1%, 95% CI: 35.8% to 66.3%) had PD-L1 % positivity rates similar to primary tumors. PD-L1 expression was rare on tumor cells in both the breast and metastatic sites (8.3% vs 4.3%, p=0.13). The rate of PD-L1 positivity varies by metastatic location with substantially lower positivity rates in liver, skin and bone metastases compared with primary breast lesions or lung, soft tissue or lymph node metastases. This difference in PD-L1 positivity rates between primary tumors and different metastatic sites should inform physicians when choosing sites to biopsy and suggests a difference in the immune microenvironment across metastatic sites.


Early Modulation of Circulating MicroRNAs Levels in HER2-Positive Breast Cancer Patients Treated with Trastuzumab-Based Neoadjuvant Therapy.

  • Serena Di Cosimo‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Circulating microRNA (ct-miRNAs) are able to identify patients with differential response to HER2-targeted therapy. However, their dynamics are largely unknown. We assessed 752 miRNAs from 52 NeoALTTO patients with plasma pairs prior and two weeks after trastuzumab. Increased levels of ct-miR-148a-3p and ct-miR-374a-5p were significantly associated with pathological complete response (pCR) (p = 0.008 and 0.048, respectively). At a threshold ≥ the upper limit of the 95%CI of the mean difference, pCR resulted 45% (95%CI 24%-68%), and 44% (95%CI 22%-69%) for ct-miR-148a-3p and ct-miR-374a-5p, respectively. Notably, ct-miR-148a-3p retained its predictive value (OR 3.42, 95%CI 1.23-9.46, p = 0.018) in bivariate analysis along with estrogen receptor status. Combined information from ct-miR-148a-3p and ct-miR140-5p, which we previously reported to identify trastuzumab-responsive patients, resulted in greater predictive capability over each other, with pCR of 54% (95%CI 25%-81%) and 0% (95%CI 0%-31%) in ct-miR-148a/ct-miR-140-5p high/present and low/absent, respectively. GO and KEGG analyses showed common enriched terms between the targets of these ct-miRNAs, including cell metabolism regulation, AMPK and MAPK signaling, and HCC progression. In conclusion, early modulated ct-miR-148-3p may inform on the functional processes underlying treatment response, integrate the information from already available predictive biomarkers, and identify patients likely to respond to single agent trastuzumab-based neoadjuvant therapy.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: