Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

Gating of a pH-sensitive K(2P) potassium channel by an electrostatic effect of basic sensor residues on the selectivity filter.

  • Leandro Zúñiga‎ et al.
  • PloS one‎
  • 2011‎

K(+) channels share common selectivity characteristics but exhibit a wide diversity in how they are gated open. Leak K(2P) K(+) channels TASK-2, TALK-1 and TALK-2 are gated open by extracellular alkalinization. The mechanism for this alkalinization-dependent gating has been proposed to be the neutralization of the side chain of a single arginine (lysine in TALK-2) residue near the pore of TASK-2, which occurs with the unusual pK(a) of 8.0. We now corroborate this hypothesis by transplanting the TASK-2 extracellular pH (pH(o)) sensor in the background of a pH(o)-insensitive TASK-3 channel, which leads to the restitution of pH(o)-gating. Using a concatenated channel approach, we also demonstrate that for TASK-2 to open, pH(o) sensors must be neutralized in each of the two subunits forming these dimeric channels with no apparent cross-talk between the sensors. These results are consistent with adaptive biasing force analysis of K(+) permeation using a model selectivity filter in wild-type and mutated channels. The underlying free-energy profiles confirm that either a doubly or a singly charged pH(o) sensor is sufficient to abolish ion flow. Atomic detail of the associated mechanism reveals that, rather than a collapse of the pore, as proposed for other K(2P) channels gated at the selectivity filter, an increased height of the energetic barriers for ion translocation accounts for channel blockade at acid pH(o). Our data, therefore, strongly suggest that a cycle of protonation/deprotonation of pH(o)-sensing arginine 224 side chain gates the TASK-2 channel by electrostatically tuning the conformational stability of its selectivity filter.


Voltage-dependent and -independent titration of specific residues accounts for complex gating of a ClC chloride channel by extracellular protons.

  • María Isabel Niemeyer‎ et al.
  • The Journal of physiology‎
  • 2009‎

The ClC transport protein family comprises both Cl(-) ion channel and H(+)/Cl(-) and H(+)/NO(3)(-) exchanger members. Structural studies on a bacterial ClC transporter reveal a pore obstructed at its external opening by a glutamate side-chain which acts as a gate for Cl(-) passage and in addition serves as a staging post for H(+) exchange. This same conserved glutamate acts as a gate to regulate Cl(-) flow in ClC channels. The activity of ClC-2, a genuine Cl(-) channel, has a biphasic response to extracellular pH with activation by moderate acidification followed by abrupt channel closure at pH values lower than approximately 7. We have now investigated the molecular basis of this complex gating behaviour. First, we identify a sensor that couples extracellular acidification to complete closure of the channel. This is extracellularly-facing histidine 532 at the N-terminus of transmembrane helix Q whose neutralisation leads to channel closure in a cooperative manner. We go on to show that acidification-dependent activation of ClC-2 is voltage dependent and probably mediated by protonation of pore gate glutamate 207. Intracellular Cl(-) acts as a voltage-independent modulator, as though regulating the pK(a) of the protonatable residue. Our results suggest that voltage dependence of ClC-2 is given by hyperpolarisation-dependent penetration of protons from the extracellular side to neutralise the glutamate gate deep within the channel, which allows Cl(-) efflux. This is reminiscent of a partial exchanger cycle, suggesting that the ClC-2 channel evolved from its transporter counterparts.


Sexual dimorphism and oestrogen regulation of KCNE3 expression modulates the functional properties of KCNQ1 K⁺ channels.

  • Rodrigo Alzamora‎ et al.
  • The Journal of physiology‎
  • 2011‎

The KCNQ1 potassium channel associates with various KCNE ancillary subunits that drastically affect channel gating and pharmacology. Co-assembly with KCNE3 produces a current with nearly instantaneous activation, some time-dependent activation at very positive potentials, a linear current-voltage relationship and a 10-fold higher sensitivity to chromanol 293B. KCNQ1:KCNE3 channels are expressed in colonic crypts and mediate basolateral K(+) recycling required for Cl(-) secretion. We have previously reported the female-specific anti-secretory effects of oestrogen via KCNQ1:KCNE3 channel inhibition in colonic crypts. This study was designed to determine whether sex and oestrogen regulate the expression and function of KCNQ1 and KCNE3 in rat distal colon. Colonic crypts were isolated from Sprague-Dawley rats and used for whole-cell patch-clamp and to extract total RNA and protein. Sheets of epithelium were used for short-circuit current recordings. KCNE1 and KCNE3 mRNA and protein abundance were significantly higher in male than female crypts. No expression of KCNE2 was found and no difference was observed in KCNQ1 expression between male and female (at oestrus) colonic crypts. Male crypts showed a 2.2-fold higher level of association of KCNQ1 and KCNE3 compared to female cells. In female colonic crypts, KCNQ1 and KCNE3 protein expression fluctuated throughout the oestrous cycle and 17β-oestradiol (E2 10 nM) produced a rapid (<15 min) dissociation of KCNQ1 and KCNE3 in female crypts only. Whole-cell K(+) currents showed a linear current-voltage relationship in male crypts, while K(+) currents in colonic crypts isolated from females displayed voltage-dependent outward rectification. Currents in isolated male crypts and epithelial sheets were 10-fold more sensitive to specific KCNQ1 inhibitors, such as chromanol 293B and HMR-1556, than in female. The effect of E2 on K(+) currents mediated by KCNQ1 with or without different β-subunits was assayed from current-voltage relations elicited in CHO cells transfected with KCNQ1 and KCNE3 or KCNE1 cDNA. E2 (100 nM) reduced the currents mediated by the KCNQ1:KCNE3 potassium channel and had no effect on currents via KCNQ1:KCNE1 or KCNQ1 alone. Currents mediated by the complex formed by KCNQ1 and the mutant KCNE3-S82A β-subunit (mutation of the site for PKCδ-promoted phosphorylation and modulation of the activity of KCNE3) showed rapid run-down and insensitivity to E2. Together, these data suggest that oestrogen regulates the expression of the KCNE1 and KCNE3 and with it the gating and pharmacological properties of the K(+) conductance required for Cl(-) secretion. The decreased association of the KCNQ1:KCNE3 channel complex promoted by oestrogen exposure underlies the molecular mechanism for the sexual dimorphism and oestrous cycle dependence of the anti-secretory actions of oestrogen in the intestine.


A novel Kir7.1 splice variant expressed in various mouse tissues shares organisational and functional properties with human Leber amaurosis-causing mutations of this K+ channel.

  • Erwin Vera‎ et al.
  • Biochemical and biophysical research communications‎
  • 2019‎

Kir7.1 is an inwardly rectifying K+ channel present in epithelia where it shares membrane localization with the Na+/K+-pump. In the present communication we report the presence of a novel splice variant of Kir7.1 in mouse tissues including kidney, lung, choroid plexus and retinal pigment epithelium (RPE). The variant named mKir7.1-SV2 lacks most of the C-terminus domain but is predicted to have the two transmembrane domains and permeation pathway unaffected. Similarly truncated predicted proteins, Kir7.1-R166X and Kir7.1-Q219X, would arise from mutations associated with Leber Congenital Amaurosis, a rare recessive hereditary retinal disease that results in vision loss at early age. We found that mKir7.1-SV2 and the pathological variants do not produce any channel activity when expressed alone in HEK-293 cells due to their scarce presence in the plasma membrane. Simultaneous expression with the full length Kir7.1 however leads to a reduction in activity of the wild-type channel that might be due to partial proteasome degradation of WT-mutant channel heteromers.


A new family of glutamate-gated chloride channels in parasitic sea louse Caligus rogercresseyi: A subunit refractory to activation by ivermectin is dominant in heteromeric assemblies.

  • Felipe Tribiños‎ et al.
  • PLoS pathogens‎
  • 2023‎

Sea louse ectoparasitosis is a major threat to fish aquaculture. Avermectins such as ivermectin and emamectin have been effectively used against sea louse infestation, but the emergence of resistance has limited their use. A better understanding of the molecular targets of avermectins is essential to the development of novel treatment strategies or new, more effective drugs. Avermectins are known to act by inhibiting neurotransmission through allosteric activation of glutamate-gated chloride channels (GluCls). We have investigated the GluCl subunit present in Caligus rogercresseyi, a sea louse affecting aquaculture in the Southern hemisphere. We identify four new subunits, CrGluCl-B to CrGluCl-E, and characterise them functionally. CrGluCl-A (previously reported as CrGluClα), CrGluCl-B and CrGluCl-C all function as glutamate channel receptors with different sensitivities to the agonist, but in contrast to subunit -A and -C, CrGluCl-B is not activated by ivermectin but is rather antagonised by the drug. CrGluCl-D channel appears active in the absence of any stimulation by glutamate or ivermectin and CrGluCl-E does not exhibit any activity. Notably, the expression of CrGluCl-B with either -A or -C subunits gives rise to receptors unresponsive to ivermectin and showing altered response to glutamate, suggesting that coexpression has led to the preferential formation of heteromers to which the presence of CrGluCl-B confers the property of ivermectin-activation refractoriness. Furthermore, there was evidence for heteromer formation with novel properties only when coexpressing pairs E/C and D/B CrGluCl subtypes. Site-directed mutagenesis shows that three transmembrane domain residues contribute to the lack of activation by ivermectin, most crucially Gln 15' in M2, with mutation Q15'T (the residue present in ivermectin-activated subunits A and C) conferring ivermectin activation to CrGluCl-B. The differential response to avermectin of these Caligus rogercresseyi GluClsubunits, which are highly conserved in the Northern hemisphere sea louse Lepeophtheirus salmonis, could have an influence on the response of these parasites to treatment with macrocyclic lactones. They could serve as molecular markers to assess susceptibility to existing treatments and might be useful molecular targets in the search for novel antiparasitic drugs.


Kcnn4 is a modifier gene of intestinal cystic fibrosis preventing lethality in the Cftr-F508del mouse.

  • Amber R Philp‎ et al.
  • Scientific reports‎
  • 2018‎

Nearly 70% of cystic fibrosis (CF) patients bear the phenylalanine-508 deletion but disease severity differs greatly, and is not explained by the existence of different mutations in compound heterozygous. Studies demonstrated that genes other than CFTR relate to intestinal disease in humans and CF-mouse. Kcnn4, the gene encoding the calcium-activated potassium channel KCa3.1, important for intestinal secretion, is present in a locus linked with occurrence of intestinal CF-disease in mice and humans. We reasoned that it might be a CF-modifier gene and bred a CF-mouse with Kcnn4 silencing, finding that lethality was almost abolished. Silencing of Kcnn4 did not improve intestinal secretory functions, but rather corrected increased circulating TNF-α level and reduced intestinal mast cell increase. Given the importance of mast cells in intestinal disease additional double mutant CF-animals were tested, one lacking mast cells (C-kitW-sh/W-sh) and Stat6-/- to block IgE production. While mast cell depletion had no effect, silencing Stat6 significantly reduced lethality. Our results show that Kcnn4 is an intestinal CF modifier gene partially acting through a STAT6-dependent mechanism.


TASK-2: a K2P K(+) channel with complex regulation and diverse physiological functions.

  • L Pablo Cid‎ et al.
  • Frontiers in physiology‎
  • 2013‎

TASK-2 (K2P5.1) is a two-pore domain K(+) channel belonging to the TALK subgroup of the K2P family of proteins. TASK-2 has been shown to be activated by extra- and intracellular alkalinization. Extra- and intracellular pH-sensors reside at arginine 224 and lysine 245 and might affect separate selectivity filter and inner gates respectively. TASK-2 is modulated by changes in cell volume and a regulation by direct G-protein interaction has also been proposed. Activation by extracellular alkalinization has been associated with a role of TASK-2 in kidney proximal tubule bicarbonate reabsorption, whilst intracellular pH-sensitivity might be the mechanism for its participation in central chemosensitive neurons. In addition to these functions TASK-2 has been proposed to play a part in apoptotic volume decrease in kidney cells and in volume regulation of glial cells and T-lymphocytes. TASK-2 is present in chondrocytes of hyaline cartilage, where it is proposed to play a central role in stabilizing the membrane potential. Additional sites of expression are dorsal root ganglion neurons, endocrine and exocrine pancreas and intestinal smooth muscle cells. TASK-2 has been associated with the regulation of proliferation of breast cancer cells and could become target for breast cancer therapeutics. Further work in native tissues and cells together with genetic modification will no doubt reveal the details of TASK-2 functions that we are only starting to suspect.


Identification and functional expression of a glutamate- and avermectin-gated chloride channel from Caligus rogercresseyi, a southern Hemisphere sea louse affecting farmed fish.

  • Isabel Cornejo‎ et al.
  • PLoS pathogens‎
  • 2014‎

Parasitic sea lice represent a major sanitary threat to marine salmonid aquaculture, an industry accounting for 7% of world fish production. Caligus rogercresseyi is the principal sea louse species infesting farmed salmon and trout in the southern hemisphere. Most effective control of Caligus has been obtained with macrocyclic lactones (MLs) ivermectin and emamectin. These drugs target glutamate-gated chloride channels (GluCl) and act as irreversible non-competitive agonists causing neuronal inhibition, paralysis and death of the parasite. Here we report the cloning of a full-length CrGluClα receptor from Caligus rogercresseyi. Expression in Xenopus oocytes and electrophysiological assays show that CrGluClα is activated by glutamate and mediates chloride currents blocked by the ligand-gated anion channel inhibitor picrotoxin. Both ivermectin and emamectin activate CrGluClα in the absence of glutamate. The effects are irreversible and occur with an EC(50) value of around 200 nM, being cooperative (n(H) = 2) for ivermectin but not for emamectin. Using the three-dimensional structure of a GluClα from Caenorabditis elegans, the only available for any eukaryotic ligand-gated anion channel, we have constructed a homology model for CrGluClα. Docking and molecular dynamics calculations reveal the way in which ivermectin and emamectin interact with CrGluClα. Both drugs intercalate between transmembrane domains M1 and M3 of neighbouring subunits of a pentameric structure. The structure displays three H-bonds involved in this interaction, but despite similarity in structure only of two these are conserved from the C. elegans crystal binding site. Our data strongly suggest that CrGluClα is an important target for avermectins used in the treatment of sea louse infestation in farmed salmonids and open the way for ascertaining a possible mechanism of increasing resistance to MLs in aquaculture industry. Molecular modeling could help in the design of new, more efficient drugs whilst functional expression of the receptor allows a first stage of testing of their efficacy.


Cleft Palate, Moderate Lung Developmental Retardation and Early Postnatal Lethality in Mice Deficient in the Kir7.1 Inwardly Rectifying K+ Channel.

  • Sandra Villanueva‎ et al.
  • PloS one‎
  • 2015‎

Kir7.1 is an inwardly rectifying K+ channel of the Kir superfamily encoded by the kcnj13 gene. Kir7.1 is present in epithelial tissues where it colocalizes with the Na+/K+-pump probably serving to recycle K+ taken up by the pump. Human mutations affecting Kir7.1 are associated with retinal degeneration diseases. We generated a mouse lacking Kir7.1 by ablation of the Kcnj13 gene. Homozygous mutant null mice die hours after birth and show cleft palate and moderate retardation in lung development. Kir7.1 is expressed in the epithelium covering the palatal processes at the time at which palate sealing takes place and our results suggest it might play an essential role in late palatogenesis. Our work also reveals a second unexpected role in the development and the physiology of the respiratory system, where Kir7.1 is expressed in epithelial cells all along the respiratory tree.


Phosphatidylinositol (4,5)-bisphosphate dynamically regulates the K2P background K+ channel TASK-2.

  • María Isabel Niemeyer‎ et al.
  • Scientific reports‎
  • 2017‎

Two-pore domain K2P K+ channels responsible for the background K+ conductance and the resting membrane potential, are also finely regulated by a variety of chemical, physical and physiological stimuli. Hormones and transmitters acting through Gq protein-coupled receptors (GqPCRs) modulate the activity of various K2P channels but the signalling involved has remained elusive, in particular whether dynamic regulation by membrane PI(4,5)P2, common among other classes of K+ channels, affects K2P channels is controversial. Here we show that K2P K+ channel TASK-2 requires PI(4,5)P2 for activity, a dependence that accounts for its run down in the absence of intracellular ATP and its full recovery by addition of exogenous PI(4,5)P2, its inhibition by low concentrations of polycation PI scavengers, and inhibition by PI(4,5)P2 depletion from the membrane. Comprehensive mutagenesis suggests that PI(4,5)P2 interaction with TASK-2 takes place at C-terminus where three basic aminoacids are identified as being part of a putative binding site.


Kir7.1 inwardly rectifying K+ channel is expressed in ciliary body non pigment epithelial cells and might contribute to intraocular pressure regulation.

  • Johanna Burgos‎ et al.
  • Experimental eye research‎
  • 2019‎

Inwardly rectifying K+ channel Kir7.1 is expressed in epithelia where it shares membrane localisation with the Na+/K+-pump. The ciliary body epithelium (CBE) of the eye is a determinant of intraocular pressure (IOP) through NaCl-driven fluid secretion of aqueous humour. In the present study we explored the presence Kir7.1 in this epithelium in the mouse and its possible functional role in the generation of IOP. Use heterozygous animals for total Kir7.1 knockout expressing β-galactosidase under the control of Kir7.1 promoter, identified the expression of Kir7.1 in non-pigmented epithelial cells of CBE. Using conditional, floxed knockout Kir7.1 mice as negative controls, we found Kir7.1 at the basolateral membrane of the same CBE cell layer. This was confirmed using a knockin mouse expressing the Kir7.1 protein tagged with a haemagglutinin epitope. Measurements using the conditional knockout mouse show only a minor effect of Kir7.1 inactivation on steady-state IOP. Transient increases in IOP in response to general anaesthetics, or to water injection, are absent or markedly curtailed in Kir7.1-deficient mice. These results suggest a role for Kir7.1 in IOP regulation through a possible modulation of aqueous humour production by the CBE non-pigmented epithelial cells. The location of Kir7.1 in the CBE, together with the effect of its removal on dynamic changes in IOP, point to a possible role of the channel as a leak pathway preventing cellular overload of K+ during the secretion process. Kir7.1 could be used as a potential therapeutic target in pathological conditions leading to elevated intraocular pressure.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: