Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 272 papers

Spatial mapping of structural and connectional imaging data for the developing human brain with diffusion tensor imaging.

  • Austin Ouyang‎ et al.
  • Methods (San Diego, Calif.)‎
  • 2015‎

During human brain development from fetal stage to adulthood, the white matter (WM) tracts undergo dramatic changes. Diffusion tensor imaging (DTI), a widely used magnetic resonance imaging (MRI) modality, offers insight into the dynamic changes of WM fibers as these fibers can be noninvasively traced and three-dimensionally (3D) reconstructed with DTI tractography. The DTI and conventional T1 weighted MRI images also provide sufficient cortical anatomical details for mapping the cortical regions of interests (ROIs). In this paper, we described basic concepts and methods of DTI techniques that can be used to trace major WM tracts noninvasively from fetal brain of 14 postconceptional weeks (pcw) to adult brain. We applied these techniques to acquire DTI data and trace, reconstruct and visualize major WM tracts during development. After categorizing major WM fiber bundles into five unique functional tract groups, namely limbic, brain stem, projection, commissural and association tracts, we revealed formation and maturation of these 3D reconstructed WM tracts of the developing human brain. The structural and connectional imaging data offered by DTI provides the anatomical backbone of transcriptional atlas of the developing human brain.


Genetic map construction and quantitative trait locus (QTL) detection of growth-related traits in Litopenaeus vannamei for selective breeding applications.

  • Farafidy Andriantahina‎ et al.
  • PloS one‎
  • 2013‎

Growth is a priority trait from the point of view of genetic improvement. Molecular markers linked to quantitative trait loci (QTL) have been regarded as useful for marker-assisted selection (MAS) in complex traits as growth. Using an intermediate F2 cross of slow and fast growth parents, a genetic linkage map of Pacific whiteleg shrimp, Litopenaeusvannamei, based on amplified fragment length polymorphisms (AFLP) and simple sequence repeats (SSR) markers was constructed. Meanwhile, QTL analysis was performed for growth-related traits. The linkage map consisted of 451 marker loci (429 AFLPs and 22 SSRs) which formed 49 linkage groups with an average marker space of 7.6 cM; they spanned a total length of 3627.6 cM, covering 79.50% of estimated genome size. 14 QTLs were identified for growth-related traits, including three QTLs for body weight (BW), total length (TL) and partial carapace length (PCL), two QTLs for body length (BL), one QTL for first abdominal segment depth (FASD), third abdominal segment depth (TASD) and first abdominal segment width (FASW), which explained 2.62 to 61.42% of phenotypic variation. Moreover, comparison of linkage maps between L. vannamei and Penaeusjaponicus was applied, providing a new insight into the genetic base of QTL affecting the growth-related traits. The new results will be useful for conducting MAS breeding schemes in L. vannamei .


Transplantation of EPCs overexpressing PDGFR-β promotes vascular repair in the early phase after vascular injury.

  • Hang Wang‎ et al.
  • BMC cardiovascular disorders‎
  • 2016‎

Endothelial progenitor cells (EPCs) play important roles in the regeneration of the vascular endothelial cells (ECs). Platelet-derived growth factor receptor (PDGFR)-β is known to contribute to proliferation, migration, and angiogenesis of EPCs, this study aims to investigate effects of transplantation of EPCs overexpressing PDGFR-β on vascular regeneration.


LC-MS Based Sphingolipidomic Study on A2780 Human Ovarian Cancer Cell Line and its Taxol-resistant Strain.

  • Hao Huang‎ et al.
  • Scientific reports‎
  • 2016‎

Drug resistance elicited by cancer cells continue to cause huge problems world-wide, for example, tens of thousands of patients are suffering from taxol-resistant human ovarian cancer. However, its biochemical mechanisms remain unclear. Sphingolipid metabolic dysregulation has been increasingly regarded as one of the drug-resistant mechanisms for various cancers, which in turn provides potential targets for overcoming the resistance. In the current study, a well-established LC-MS based sphingolipidomic approach was applied to investigate the sphingolipid metabolism of A2780 and taxol-resistant A2780 (A2780T) human ovarian cancer cell lines. 102 sphingolipids (SPLs) were identified based on accurate mass and characteristic fragment ions, among which 12 species have not been reported previously. 89 were further quantitatively analyzed by using multiple reaction monitoring technique. Multivariate analysis revealed that the levels of 52 sphingolipids significantly altered in A2780T cells comparing to those of A2780 cells. These alterations revealed an overall increase of sphingomyelin levels and significant decrease of ceramides, hexosylceramides and lactosylceramides, which concomitantly indicated a deviated SPL metabolism in A2780T. This is the most comprehensive sphingolipidomic analysis of A2780 and A2780T, which investigated significantly changed sphingolipid profile in taxol-resistant cancer cells. The aberrant sphingolipid metabolism in A2780T could be one of the mechanisms of taxol-resistance.


Proteomic analysis of the human KEOPS complex identifies C14ORF142 as a core subunit homologous to yeast Gon7.

  • Leo C K Wan‎ et al.
  • Nucleic acids research‎
  • 2017‎

The KEOPS/EKC complex is a tRNA modification complex involved in the biosynthesis of N6-threonylcarbamoyladenosine (t6A), a universally conserved tRNA modification found on ANN-codon recognizing tRNAs. In archaea and eukaryotes, KEOPS is composed of OSGEP/Kae1, PRPK/Bud32, TPRKB/Cgi121 and LAGE3/Pcc1. In fungi, KEOPS contains an additional subunit, Gon7, whose orthologs outside of fungi, if existent, remain unidentified. In addition to displaying defective t6A biosynthesis, Saccharomyces cerevisiae strains harboring KEOPS mutations are compromised for telomere homeostasis, growth and transcriptional co-activation. To identify a Gon7 ortholog in multicellular eukaryotes as well as to uncover KEOPS-interacting proteins that may link t6A biosynthesis to the diverse set of KEOPS mutant phenotypes, we conducted a proteomic analysis of human KEOPS. This work identified 152 protein interactors, one of which, C14ORF142, interacted strongly with all four KEOPS subunits, suggesting that it may be a core component of human KEOPS. Further characterization of C14ORF142 revealed that it shared a number of biophysical and biochemical features with fungal Gon7, suggesting that C14ORF142 is the human ortholog of Gon7. In addition, our proteomic analysis identified specific interactors for different KEOPS subcomplexes, hinting that individual KEOPS subunits may have additional functions outside of t6A biosynthesis.


New differentially expressed genes and differential DNA methylation underlying refractory epilepsy.

  • Xi Liu‎ et al.
  • Oncotarget‎
  • 2016‎

Epigenetics underlying refractory epilepsy is poorly understood, especially in patients without distinctive genetic alterations. DNA methylation may affect gene expression in epilepsy without affecting DNA sequences. Herein, we analyzed genome-wide DNA methylation and gene expression in brain tissues of 10 patients with refractory epilepsy using methylated DNA immunoprecipitation linked with sequencing and mRNA Sequencing. Diverse distribution of differentially methylated genes was found in X chromosome, while differentially methylated genes appeared rarely in Y chromosome. 62 differentially expressed genes, such as MMP19, AZGP1, DES, and LGR6 were correlated with refractory epilepsy for the first time. Although general trends of differentially enriched gene ontology terms and Kyoto Encyclopedia of Genes and Genome pathways in this study are consistent with previous researches, differences also exist in many specific gene ontology terms and Kyoto Encyclopedia of Genes and Genome pathways. These findings provide a new genome-wide profiling of DNA methylation and gene expression in brain tissues of patients with refractory epilepsy, which may provide a basis for further study on the etiology and mechanisms of refractory epilepsy.


MicroRNA-132 Interact with p250GAP/Cdc42 Pathway in the Hippocampal Neuronal Culture Model of Acquired Epilepsy and Associated with Epileptogenesis Process.

  • Jinxian Yuan‎ et al.
  • Neural plasticity‎
  • 2016‎

Increasing evidence suggests that epilepsy is the result of synaptic reorganization and pathological excitatory loop formation in the central nervous system; however, the mechanisms that regulate this process are not well understood. We proposed that microRNA-132 (miR-132) and p250GAP might play important roles in this process by activating the downstream Rho GTPase family. We tested this hypothesis using a magnesium-free medium-induced epileptic model of cultured hippocampal neurons. We investigated whether miR-132 regulates GTPase activity through p250GAP and found that Cdc42 was significantly activated in our experimental model. Silencing miR-132 inhibited the electrical excitability level of cultured epileptic neurons, whereas silencing p250GAP had an opposite effect. In addition, we verified the effect of miR-132 in vivo and found that silencing miR-132 inhibited the aberrant formation of dendritic spines and chronic spontaneous seizure in a lithium-pilocarpine-induced epileptic mouse model. Finally, we confirmed that silencing miR-132 has a neuroprotective effect on cultured epileptic neurons; however, this effect did not occur through the p250GAP pathway. Generally, silencing miR-132 may suppress spontaneous seizure activity through the miR-132/p250GAP/Cdc42 pathway by regulating the morphology and electrophysiology of dendritic spines; therefore, miR-132 may serve as a potential target for the development of antiepileptic drugs.


53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark.

  • Amélie Fradet-Turcotte‎ et al.
  • Nature‎
  • 2013‎

53BP1 (also called TP53BP1) is a chromatin-associated factor that promotes immunoglobulin class switching and DNA double-strand-break (DSB) repair by non-homologous end joining. To accomplish its function in DNA repair, 53BP1 accumulates at DSB sites downstream of the RNF168 ubiquitin ligase. How ubiquitin recruits 53BP1 to break sites remains unknown as its relocalization involves recognition of histone H4 Lys 20 (H4K20) methylation by its Tudor domain. Here we elucidate how vertebrate 53BP1 is recruited to the chromatin that flanks DSB sites. We show that 53BP1 recognizes mononucleosomes containing dimethylated H4K20 (H4K20me2) and H2A ubiquitinated on Lys 15 (H2AK15ub), the latter being a product of RNF168 action on chromatin. 53BP1 binds to nucleosomes minimally as a dimer using its previously characterized methyl-lysine-binding Tudor domain and a carboxy-terminal extension, termed the ubiquitination-dependent recruitment (UDR) motif, which interacts with the epitope formed by H2AK15ub and its surrounding residues on the H2A tail. 53BP1 is therefore a bivalent histone modification reader that recognizes a histone 'code' produced by DSB signalling.


miR-27b-3p suppresses cell proliferation through targeting receptor tyrosine kinase like orphan receptor 1 in gastric cancer.

  • Jinqiu Tao‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2015‎

The receptor tyrosine kinase-like orphan receptors (ROR) family contains the atypical member ROR1, which plays an oncogenic role in several malignant tumors. However, the clinical potentials and underlying mechanisms of ROR1 in gastric cancer progression remain largely unknown. In this study, we validated the microRNA-mediated gene repression mechanism involved in the role of ROR1.


Transcriptomic Analysis of Multipurpose Timber Yielding Tree Neolamarckia cadamba during Xylogenesis Using RNA-Seq.

  • Kunxi Ouyang‎ et al.
  • PloS one‎
  • 2016‎

Neolamarckia cadamba is a fast-growing tropical hardwood tree that is used extensively for plywood and pulp production, light furniture fabrication, building materials, and as a raw material for the preparation of certain indigenous medicines. Lack of genomic resources hampers progress in the molecular breeding and genetic improvement of this multipurpose tree species. In this study, transcriptome profiling of differentiating stems was performed to understand N. cadamba xylogenesis. The N. cadamba transcriptome was sequenced using Illumina paired-end sequencing technology. This generated 42.49 G of raw data that was then de novo assembled into 55,432 UniGenes with a mean length of 803.2bp. Approximately 47.8% of the UniGenes (26,487) were annotated against publically available protein databases, among which 21,699 and 7,754 UniGenes were assigned to Gene Ontology categories (GO) and Clusters of Orthologous Groups (COG), respectively. 5,589 UniGenes could be mapped onto 116 pathways using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database. Among 6,202 UniGenes exhibiting differential expression during xylogenesis, 1,634 showed significantly higher levels of expression in the basal and middle stem segments compared to the apical stem segment. These genes included NAC and MYB transcription factors related to secondary cell wall biosynthesis, genes related to most metabolic steps of lignin biosynthesis, and CesA genes involved in cellulose biosynthesis. This study lays the foundation for further screening of key genes associated with xylogenesis in N. cadamba as well as enhancing our understanding of the mechanism of xylogenesis in fast-growing trees.


miR-22 has a potent anti-tumour role with therapeutic potential in acute myeloid leukaemia.

  • Xi Jiang‎ et al.
  • Nature communications‎
  • 2016‎

MicroRNAs are subject to precise regulation and have key roles in tumorigenesis. In contrast to the oncogenic role of miR-22 reported in myelodysplastic syndrome (MDS) and breast cancer, here we show that miR-22 is an essential anti-tumour gatekeeper in de novo acute myeloid leukaemia (AML) where it is significantly downregulated. Forced expression of miR-22 significantly suppresses leukaemic cell viability and growth in vitro, and substantially inhibits leukaemia development and maintenance in vivo. Mechanistically, miR-22 targets multiple oncogenes, including CRTC1, FLT3 and MYCBP, and thus represses the CREB and MYC pathways. The downregulation of miR-22 in AML is caused by TET1/GFI1/EZH2/SIN3A-mediated epigenetic repression and/or DNA copy-number loss. Furthermore, nanoparticles carrying miR-22 oligos significantly inhibit leukaemia progression in vivo. Together, our study uncovers a TET1/GFI1/EZH2/SIN3A/miR-22/CREB-MYC signalling circuit and thereby provides insights into epigenetic/genetic mechanisms underlying the pathogenesis of AML, and also highlights the clinical potential of miR-22-based AML therapy.


TREK‑TRAAK two‑pore domain potassium channels protect human retinal pigment epithelium cells from oxidative stress.

  • Hao Huang‎ et al.
  • International journal of molecular medicine‎
  • 2018‎

The aim of the current study was to explore the potential of TREK‑TRAAK two‑pore domain potassium (K2P) channels in protecting human retinal pigment epithelium (hRPE) cells against oxidative stress. hRPE cells were obtained from donors, and then cell identification and detection of the expression levels of TREK‑TRAAK K2P channels in hRPE cells were conducted. Subsequently, tert‑butyl hydroperoxide (t‑BH) was used to induce oxidative stress in hRPE cells. Docosahexaenoic acid (DHA) was used to stimulate and fluoxetine was used to inhibit the TREK‑TRAAK K2P channels. The survival rates of hRPE cells under oxidative stress were examined using flow cytometry. Apoptosis‑associated factors, including Bax, Bcl‑2, cleaved‑caspase‑3, αB‑crystallin and their mRNAs, were examined using immunofluorescence, western blot and reverse transcription‑polymerase chain reaction analyses. Variations in the cytoarchitecture were observed by immunofluorescence and electron microscopy. The cells examined in the present study were identified as hRPE cells. All members in the TREK‑TRAAK K2P channel family (including TREK‑1, TREK‑2 and TRAAK) were found to be expressed in hRPE cells. Stimulation of TREK‑TRAAK K2P channels increased the survival rates of hRPE cells under oxidative stress and the levels of intracellular protective factors, such as Bcl‑2 and αB‑crystallin. By contrast, inhibition of these channels decreased the cell survival rates and increased apoptosis enhancing factors, such as Bax and cleaved‑caspase‑3. Further examination of the cytoarchitecture revealed that TREK‑TRAAK K2P channels protected the integrity of the hRPE cell structure against oxidative stress. In conclusion, the present study suggested that the activated TREK‑TRAAK K2P channels serve a role in protecting hRPE cells against the oxidative stress induced by t‑BH, which indicated that these K2P channels are potential novel targets in retinal protection and provided a new direction for research and therapy in retinal degeneration diseases.


Differential cortical microstructural maturation in the preterm human brain with diffusion kurtosis and tensor imaging.

  • Minhui Ouyang‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2019‎

During the third trimester, the human brain undergoes rapid cellular and molecular processes that reshape the structural architecture of the cerebral cortex. Knowledge of cortical differentiation obtained predominantly from histological studies is limited in localized and small cortical regions. How cortical microstructure is differentiated across cortical regions in this critical period is unknown. In this study, the cortical microstructural architecture across the entire cortex was delineated with non-Gaussian diffusion kurtosis imaging as well as conventional diffusion tensor imaging of 89 preterm neonates aged 31-42 postmenstrual weeks. The temporal changes of cortical mean kurtosis (MK) or fractional anisotropy (FA) were heterogeneous across the cortical regions. Cortical MK decreases were observed throughout the studied age period, while cortical FA decrease reached its plateau around 37 weeks. More rapid decreases in MK were found in the primary visual region, while faster FA declines were observed in the prefrontal cortex. We found that distinctive cortical microstructural changes were coupled with microstructural maturation of associated white matter tracts. Both cortical MK and FA measurements predicted the postmenstrual age of preterm infants accurately. This study revealed a differential 4D spatiotemporal cytoarchitectural signature inferred by non-Gaussian diffusion barriers inside the cortical plate during the third trimester. The cytoarchitectural processes, including dendritic arborization and neuronal density decreases, were inferred by regional cortical FA and MK measurements. The presented findings suggest that cortical MK and FA measurements could be used as effective imaging markers for cortical microstructural changes in typical and potentially atypical brain development.


Interactive Repression of MYRF Self-Cleavage and Activity in Oligodendrocyte Differentiation by TMEM98 Protein.

  • Hao Huang‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2018‎

Myelin sheath formed by oligodendrocytes (OLs) is essential for the rapid propagation of action potentials in the vertebrate CNS. Myelin regulatory factor (MYRF) is one of the critical factors that control OL differentiation and myelin maintenance. Previous studies showed that MYRF is a membrane-bound transcription factor associated with the endoplasmic reticulum (ER). After self-cleavage, the N-fragment of MYRF is released from the ER and translocated into the nucleus where it functions as a transcription factor to activate myelin gene expression. At present, it remains unknown whether MYRF self-cleavage and functional activation can be regulated during OL differentiation. Here, we report that TMEM98, an ER-associated transmembrane protein, is capable of binding to the C-terminal of MYRF and inhibiting its self-cleavage and N-fragment nuclear translocation. In the developing CNS, TMEM98 is selectively expressed in early maturing OLs in mouse pups of either sex. Forced expression of TMEM98 in embryonic chicken spinal cord of either sex suppresses endogenous OL differentiation and MYRF-induced ectopic expression of myelin genes. These results suggest that TMEM98, through inhibiting the self-cleavage of MYRF, functions as a negative feedback regulator of MYRF in oligodendrocyte differentiation and myelination.SIGNIFICANCE STATEMENT MYRF protein is initially synthesized as an ER-associated membrane protein that undergoes autoproteolytic cleavage to release the N-fragment, which is then transported into the nucleus and activates the transcription of myelin genes. To date, the molecular mechanisms that regulate the self-cleavage and function of MYRF in regulating oligodendrocyte differentiation have remained unknown. In this study, we present the molecular and functional evidence that TMEM98 membrane protein physically interacts with MYRF in the ER and subsequently blocks its self-cleavage, N-terminal nuclear translocation, and functional activation of myelin gene expression. To our knowledge, this is the first report on the regulation of MYRF self-proteolytic activity and function by an interacting protein, providing new insights into the molecular regulation of OL differentiation and myelinogenesis.


The Role of NADPH Oxidase in the Inhibition of Trichophyton rubrum by 420-nm Intense Pulsed Light.

  • Hao Huang‎ et al.
  • Frontiers in microbiology‎
  • 2017‎

Objectives: To evaluate the effect of intense pulsed light (IPL) on Trichophyton rubrum and investigate its mechanism of action. Methods: The viability of fungi treated with IPL alone and with IPL combined with an NADPH oxidase inhibitor (DPI) pretreatment was determined by MTT assays. The reactive oxygen species (ROS) were quantified with a DCFH-DA fluorescent probe. Malondialdehyde (MDA) content and superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities were determined by commercial kits. The transcription of the Nox gene was quantified using quantitative real-time PCR (qRT-PCR) analysis, and micromorphology was observed using scanning electron microscopy (SEM). In addition, fungal keratinase activity was detected by measuring dye release from keratin azure. Results: The growth declined with statistical significance after 6 h of treatment (P < 0.001). The ROS and MDA content increased after IPL treatment, whereas the SOD and GSH-Px activity decreased. Nox gene expression was upregulated, and the micromorphology was damaged. Keratinase activity decreased. Fungi that received DPI pretreatment exhibited contrasting outcomes. Conclusion: We found that 420-nm IPL significantly inhibited the growth and pathogenicity of T. rubrum in vitro. A suggested mechanism involves Nox as a factor that mediates 420-nm IPL-induced oxidative damage of T. rubrum.


HNRNPK inhibits gastric cancer cell proliferation through p53/p21/CCND1 pathway.

  • Hao Huang‎ et al.
  • Oncotarget‎
  • 2017‎

Gastric cancer (GC) is one of the most common human cancers. The molecular mechanisms underlying GC carcinogenesis and progression are still not well understood. In this study, we showed that heterogeneous nuclear ribonucleoprotein K (HNRNPK) was an effective prognostic marker for GC patients especially in early stage. Overexpression of HNRNPK can retard tumor cell proliferation and colony formation in vitro and inhibit tumor growth in vivo through p53/p21/CCND1 axis. Bioinformatics analyses indicated that HNRNPK associated genes were enriched in cell cycle and DNA replication process. Protein-protein interaction network showed that HNRNPK was physically interacted with p53, p21 and other cancer related genes. Besides, GSEA showed that HNRNPK expression was positively correlated with GAMMA radiation response and DNA repair, while negatively correlated with angiogenesis, TGF-β and Hedgehog pathway activation. Finally, several chemicals including Glycine that may repress GC progression through upregulating HNRNPK are suggested. Our study demonstrated that HNRNPK may play as a tumor suppressor in gastric cancer and could be a potential therapeutic target for GC.


Structural network maturation of the preterm human brain.

  • Tengda Zhao‎ et al.
  • NeuroImage‎
  • 2019‎

During the 3rd trimester, large-scale neural circuits are formed in the human brain, resulting in a highly efficient and segregated connectome at birth. Despite recent findings identifying important preterm human brain network properties such as rich-club organization, how the structural network develops differentially across brain regions and among different types of connections in this period is not yet known. Here, using high resolution diffusion MRI of 77 preterm-born and full-term neonates scanned at 31.9-41.7 postmenstrual weeks (PMW), we constructed structural connectivity matrices and performed graph-theory-based analyses. Faster increases of nodal efficiency were mainly located at the brain hubs distributed in primary sensorimotor regions, superior-middle frontal, and precuneus regions during 31.9-41.7PMW. Higher rates of edge strength increases were found in the rich-club and within-module connections, compared to other connections. The edge strength of short-range connections increased faster than that of long-range connections. Nodal efficiencies of the hubs predicted individual postmenstrual ages more accurately than those of non-hubs. Collectively, these findings revealed more rapid efficiency increases of the hub and rich-club connections as well as higher developmental rates of edge strength in short-range and within-module connections. These jointly underlie network segregation and differentiated emergence of brain functions.


Realization of wafer-scale nanogratings with sub-50 nm period through vacancy epitaxy.

  • Qiushi Huang‎ et al.
  • Nature communications‎
  • 2019‎

Gratings, one of the most important energy dispersive devices, are the fundamental building blocks for the majority of optical and optoelectronic systems. The grating period is the key parameter that limits the dispersion and resolution of the system. With the rapid development of large X-ray science facilities, gratings with periodicities below 50 nm are in urgent need for the development of ultrahigh-resolution X-ray spectroscopy. However, the wafer-scale fabrication of nanogratings through conventional patterning methods is difficult. Herein, we report a maskless and high-throughput method to generate wafer-scale, multilayer gratings with period in the sub-50 nm range. They are fabricated by a vacancy epitaxy process and coated with X-ray multilayers, which demonstrate extremely large angular dispersion at approximately 90 eV and 270 eV. The developed new method has great potential to produce ultrahigh line density multilayer gratings that can pave the way to cutting edge high-resolution spectroscopy and other X-ray applications.


Altered structural cerebral cortex in children with Tourette syndrome.

  • Lei Kong‎ et al.
  • European journal of radiology‎
  • 2020‎

In this study, we used magnetic resonance imaging (MRI) to investigate the anatomical alterations of cerebral cortex in children with Tourette syndrome (TS) and explore whether such deficits were related with their clinical symptoms.


Colorectal cancer patients with CASK promotor heterogeneous and homogeneous methylation display different prognosis.

  • Ying Liu‎ et al.
  • Aging‎
  • 2020‎

Homogenous DNA methylation clearly affects clinical outcomes. However, less is known about the effects of heterogeneous methylation. We aimed to investigate the different effects between CASK promoter methylation heterogeneity and homogeneity on colorectal cancer (CRC) patients' prognosis. The methylation status of CASK in 296 tumor tissues and 255 adjacent normal tissues were evaluated using Methylation-sensitive high-resolution melting (MS-HRM). Digital MS-HRM (dMS-HRM) visualized heterogeneous methylation and subsequent sequencing provided exact patterns. Log-rank test and Cox regression model were adopted to assess the association between CASK methylation status and CRC prognosis with propensity score (PS) method to control confounding biases. Heterogeneous methylation was detected in both tumor (52.2%) and non-neoplastic tissue surrounding the tumor (62.4%). It occurred more frequently in lower levels of tumor invasion (P = 0.002) and male patients (P < 0.001). Compared with heterogeneous methylation, patients with CASK homogeneous methylation presented poorer overall survival (OS) (HR: 1.919, 95% CI: 1.146-3.212, P = 0.013) and disease-free survival (DFS) (HR: 1.913, 95% CI: 1.146-3.194, P = 0.013). This unfavorable effect still existed among older (≥ 50), Dukes staging C/D, and rectal cancer patients. MS-HRM and dMS-HRM when combined can assess the degree and complexity of heterogeneous methylation with a visible pattern.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: