Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Impact of Maternal Malnutrition on Gut Barrier Defense: Implications for Pregnancy Health and Fetal Development.

  • Sebastian A Srugo‎ et al.
  • Nutrients‎
  • 2019‎

Small intestinal Paneth cells, enteric glial cells (EGC), and goblet cells maintain gut mucosal integrity, homeostasis, and influence host physiology locally and through the gut-brain axis. Little is known about their roles during pregnancy, or how maternal malnutrition impacts these cells and their development. Pregnant mice were fed a control diet (CON), undernourished by 30% vs. control (UN), or fed a high fat diet (HF). At day 18.5 (term = 19), gut integrity and function were assessed by immunohistochemistry and qPCR. UN mothers displayed reduced mRNA expression of Paneth cell antimicrobial peptides (AMP; Lyz2, Reg3g) and an accumulation of villi goblet cells, while HF had reduced Reg3g and mucin (Muc2) mRNA and increased lysozyme protein. UN fetuses had increased mRNA expression of gut transcription factor Sox9, associated with reduced expression of maturation markers (Cdx2, Muc2), and increased expression of tight junctions (TJ; Cldn-7). HF fetuses had increased mRNA expression of EGC markers (S100b, Bfabp, Plp1), AMP (Lyz1, Defa1, Reg3g), and TJ (Cldn-3, Cldn-7), and reduced expression of an AMP-activator (Tlr4). Maternal malnutrition altered expression of genes that maintain maternal gut homeostasis, and altered fetal gut permeability, function, and development. This may have long-term implications for host-microbe interactions, immunity, and offspring gut-brain axis function.


Are Probiotics and Prebiotics Safe for Use during Pregnancy and Lactation? A Systematic Review and Meta-Analysis.

  • Hauna Sheyholislami‎ et al.
  • Nutrients‎
  • 2021‎

Probiotic and prebiotic products have shown potential health benefits, including for the prevention of adverse pregnancy outcomes. The incidence of adverse effects in pregnant people and their infants associated with probiotic/prebiotic/synbiotic intake, however, remains unclear. The objectives of this study were to evaluate the evidence on adverse effects of maternal probiotic, prebiotic, and/or synbiotic supplementation during pregnancy and lactation and interpret the findings to help inform clinical decision-making and care of this population. A systematic review was conducted following PRISMA guidelines. Scientific databases were searched using pre-determined terms, and risk of bias assessments were conducted to determine study quality. Inclusion criteria were English language studies, human studies, access to full-text, and probiotic/prebiotic/synbiotic supplementation to the mother and not the infant. In total, 11/100 eligible studies reported adverse effects and were eligible for inclusion in quantitative analysis, and data were visualised in a GOfER diagram. Probiotic and prebiotic products are safe for use during pregnancy and lactation. One study reported increased risk of vaginal discharge and changes in stool consistency (relative risk [95% CI]: 3.67 [1.04, 13.0]) when administering Lactobacillus rhamnosus and L. reuteri. Adverse effects associated with probiotic and prebiotic use do not pose any serious health concerns to mother or infant. Our findings and knowledge translation visualisations provide healthcare professionals and consumers with information to make evidence-informed decisions about the use of pre- and probiotics.


In Utero HIV Exposure and the Early Nutritional Environment Influence Infant Neurodevelopment: Findings from an Evidenced Review and Meta-Analysis.

  • Marina White‎ et al.
  • Nutrients‎
  • 2020‎

The developing brain is especially vulnerable to infection and suboptimal nutrition during the pre- and early postnatal periods. Exposure to maternal human immunodeficiency virus (HIV) infection and antiretroviral therapies (ART) in utero and during breastfeeding can adversely influence infant (neuro) developmental trajectories. How early life nutrition may be optimised to improve neurodevelopmental outcomes for infants who are HIV-exposed has not been well characterised. We conducted an up-to-date evidence review and meta-analysis on the influence of HIV exposure in utero and during breastfeeding, and early life nutrition, on infant neurodevelopmental outcomes before age three. We report that exposure to maternal HIV infection may adversely influence expressive language development, in particular, and these effects may be detectable within the first three years of life. Further, while male infants may be especially vulnerable to HIV exposure, few studies overall reported sex-comparisons, and whether there are sex-dependent effects of HIV exposure on neurodevelopment remains a critical knowledge gap to fill. Lastly, early life nutrition interventions, including daily maternal multivitamin supplementation during the perinatal period, may improve neurodevelopmental outcomes for infants who are HIV-exposed. Our findings suggest that the early nutritional environment may be leveraged to improve early neurodevelopmental trajectories in infants who have been exposed to HIV in utero. A clear understanding of how this environment should be optimised is key for developing targeted nutrition interventions during critical developmental periods in order to mitigate adverse outcomes later in life and should be a priority of future research.


Altered Umbilical Cord Blood Nutrient Levels, Placental Cell Turnover and Transporter Expression in Human Term Pregnancies Conceived by Intracytoplasmic Sperm Injection (ICSI).

  • Enrrico Bloise‎ et al.
  • Nutrients‎
  • 2021‎

Assisted reproductive technologies (ART) may increase risk for abnormal placental development, preterm delivery and low birthweight. We investigated placental morphology, transporter expression and paired maternal/umbilical fasting blood nutrient levels in human term pregnancies conceived naturally (n = 10) or by intracytoplasmic sperm injection (ICSI; n = 11). Maternal and umbilical vein blood from singleton term (>37 weeks) C-section pregnancies were assessed for levels of free amino acids, glucose, free fatty acids (FFA), cholesterol, high density lipoprotein (HDL), low density lipoprotein (LDL), very low-density lipoprotein (VLDL) and triglycerides. We quantified placental expression of GLUT1 (glucose), SNAT2 (amino acids), P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) (drug) transporters, and placental morphology and pathology. Following ICSI, placental SNAT2 protein expression was downregulated and umbilical cord blood levels of citrulline were increased, while FFA levels were decreased at term (p < 0.05). Placental proliferation and apoptotic rates were increased in ICSI placentae (p < 0.05). No changes in maternal blood nutrient levels, placental GLUT1, P-gp and BCRP expression, or placental histopathology were observed. In term pregnancies, ICSI impairs placental SNAT2 transporter expression and cell turnover, and alters umbilical vein levels of specific nutrients without changing placental morphology. These may represent mechanisms through which ICSI impacts pregnancy outcomes and programs disease risk trajectories in offspring across the life course.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: