Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 93 papers

A knotless technique for kidney transplantation in the mouse.

  • Song Rong‎ et al.
  • Journal of transplantation‎
  • 2012‎

Mouse models of kidney transplantation are important to study molecular mechanisms of organ transplant rejection as well as to develop new therapeutic strategies aimed at improving allograft survival. However, the surgical technique necessary to result in a viable allograft has traditionally proven to be complex and very demanding. Here, we introduce a new, simple, and rapid knotless technique for vessel anastomosis wherein the last stitch of the anastomosis is not tied to the short end of the upper tie as in the classical approach but is left free. This is a critical difference in that it allows the size of the anastomosis to be increased or decreased after graft reperfusion in order to avoid stenosis or bleeding, respectively. We compared the outcome of this new knotless technique (n = 175) with the classical approach (n = 122) in terms of local thrombosis or bleeding, time for anastomosis, and survival rates. By this modification of the suture technique, local thrombosis was significantly reduced (1.1% versus 6.6%), anastomosis time was less, and highly reproducible kidney graft survival was achieved (95% versus 84% with the classical approach). We believe that this knotless technique is easy to learn and will improve the success rates in the technically demanding model of mouse kidney transplantation.


A novel therapy to attenuate acute kidney injury and ischemic allograft damage after allogenic kidney transplantation in mice.

  • Faikah Gueler‎ et al.
  • PloS one‎
  • 2015‎

Ischemia followed by reperfusion contributes to the initial damage to allografts after kidney transplantation (ktx). In this study we tested the hypothesis that a tetrapeptide EA-230 (AQGV), might improve survival and attenuate loss of kidney function in a mouse model of renal ischemia/reperfusion injury (IRI) and ischemia-induced delayed graft function after allogenic kidney transplantation. IRI was induced in male C57Bl/6N mice by transient bilateral renal pedicle clamping for 35 min. Treatment with EA-230 (20-50mg/kg twice daily i.p. for four consecutive days) was initiated 24 hours after IRI when acute kidney injury (AKI) was already established. The treatment resulted in markedly improved survival in a dose dependent manner. Acute tubular injury two days after IRI was diminished and tubular epithelial cell proliferation was significantly enhanced by EA-230 treatment. Furthermore, CTGF up-regulation, a marker of post-ischemic fibrosis, at four weeks after IRI was significantly less in EA-230 treated renal tissue. To learn more about these effects, we measured renal blood flow (RBF) and glomerular filtration rate (GFR) at 28 hours after IRI. EA-230 improved both GFR and RBF significantly. Next, EA-230 treatment was tested in a model of ischemia-induced delayed graft function after allogenic kidney transplantation. The recipients were treated with EA-230 (50 mg/kg) twice daily i.p. which improved renal function and allograft survival by attenuating ischemic allograft damage. In conclusion, EA-230 is a novel and promising therapeutic agent for treating acute kidney injury and preventing IRI-induced post-transplant ischemic allograft injury. Its beneficial effect is associated with improved renal perfusion after IRI and enhanced regeneration of tubular epithelial cells.


Osteopontin is indispensible for AP1-mediated angiotensin II-related miR-21 transcription during cardiac fibrosis.

  • Johan M Lorenzen‎ et al.
  • European heart journal‎
  • 2015‎

Osteopontin (OPN) is a multifunctional cytokine critically involved in cardiac fibrosis. However, the underlying mechanisms are unresolved. Non-coding RNAs are powerful regulators of gene expression and thus might mediate this process.


oxLDL inhibits differentiation and functional activity of osteoclasts via scavenger receptor-A mediated autophagy and cathepsin K secretion.

  • Damilola Dawodu‎ et al.
  • Scientific reports‎
  • 2018‎

Resorptive activity of osteoclasts is important for maintaining bone homeostasis. Endogenous compounds such as oxidized low density lipoprotein (oxLDL) have been shown to disturb this activity. While some studies have investigated the effects of oxLDL on the process of osteoclastogenesis, the underlying mechanism are not fully understood. We show here that oxLDL concentrations of ~10-25 µg protein (0.43-1.0 µM MDA/mg protein) completely blocked the formation of functional osteoclasts. The underlying mechanism implies an inhibition of autophagy that in turn leads to a decreased fusion of cathepsin K (CatK)-loaded lysosomal vesicles with the ruffled border membrane. As result, a lower secretion of CatK and impaired protonation of the resorption lacunae by vacuolar-ATPase (v-ATPase) is observed in the presence of oxLDL. We demonstrate that scavenger receptor A (SR-A) mediates oxLDL effects on osteoclastogenesis and repressing this receptor partially rescued oxLDL effects. Collectively, our data provides an insight into the possible mechanism of oxLDL on osteoclastogenesis suggesting that it does not perturb the packaging of CatK and v-ATPase (V-a3) in the secretory lysosome, but inhibits the fusion of these lysosomes to the ruffled border. The relevance of our findings suggests a distinct link between oxLDL, autophagy and osteoclastogenesis.


Def-6, a novel regulator of small GTPases in podocytes, acts downstream of atypical protein kinase C (aPKC) λ/ι.

  • Kirstin Worthmann‎ et al.
  • The American journal of pathology‎
  • 2013‎

The atypical protein kinase C (aPKC) isotypes PKCλ/ι and PKCζ are both expressed in podocytes; however, little is known about differences in their function. Previous studies in mice have demonstrated that podocyte-specific loss of PKCλ/ι leads to a severe glomerular phenotype, whereas mice deficient in PKCζ develop no renal phenotype. We analyzed various effects caused by PKCλ/ι and PKCζ deficiency in cultured murine podocytes. In contrast to PKCζ-deficient podocytes, PKCλ/ι-deficient podocytes exhibited a severe actin cytoskeletal phenotype, reduced cell size, decreased number of focal adhesions, and increased activation of small GTPases. Comparative microarray analysis revealed that the guanine nucleotide exchange factor Def-6 was specifically up-regulated in PKCλ/ι-deficient podocytes. In vivo Def-6 expression is significantly increased in podocytes of PKCλ/ι-deficient mice. Cultured PKCλ/ι-deficient podocytes exhibited an enhanced membrane association of Def-6, indicating enhanced activation. Overexpression of aPKCλ/ι in PKCλ/ι-deficient podocytes could reduce the membrane-associated expression of Def-6 and rescue the actin phenotype. In the present study, PKCλ/ι was identified as an important factor for actin cytoskeletal regulation in podocytes and Def-6 as a specific downstream target of PKCλ/ι that regulates the activity of small GTPases and subsequently the actin cytoskeleton of podocytes.


Detection and quantification of rituximab in the human urine.

  • Roland Jacobs‎ et al.
  • Journal of immunological methods‎
  • 2017‎

B cell depletion by rituximab treatment might be inefficient in patients suffering from nephrotic syndrome. Due to the impaired glomerular filtration barrier a significant portion of the therapeutic antibody might be lost into the urinary space. In order to determine the amount of rituximab in the urine of such patients, CD20+ Daudi cells were stained with the patients' urine followed by a fluorochrome-labeled secondary antibody. Mean fluorescence intensity of that way labeled Daudi cells was determined by flow cytometry. Control samples with defined rituximab concentrations were used to create standard curves. The analyses revealed that all nephelometric IgG+ urine samples tested also manifested rituximab at concentrations between 100 and 46,707μg/L. The flow cytometry-based approach is an easy and reliable method to assess rituximab in patients' urine samples for monitoring individual rituximab treatment courses in all patients co-presenting impaired renal filtration. Presence of such antibodies in the urine could be considered as criteria to modify the formulation or modality of rituximab delivery in order to prevent the loss of the therapeutic antibodies and thereby ensuring efficacy of the therapy.


The Peripheral NK Cell Repertoire after Kidney Transplantation is Modulated by Different Immunosuppressive Drugs.

  • Christine Neudoerfl‎ et al.
  • Frontiers in immunology‎
  • 2013‎

In the context of kidney transplantation, little is known about the involvement of natural killer (NK) cells in the immune reaction leading to either rejection or immunological tolerance under immunosuppression. Therefore, the peripheral NK cell repertoire of patients after kidney transplantation was investigated in order to identify NK cell subsets that may be associated with the individual immune status at the time of their protocol biopsies for histopathological evaluation of the graft. Alterations in the peripheral NK cell repertoire could be correlated to the type of immunosuppression, i.e., calcineurin-inhibitors like Cyclosporin A vs. Tacrolimus with or without addition of mTOR inhibitors. Here, we could demonstrate that the NK cell repertoire in peripheral blood of kidney transplant patients differs significantly from healthy individuals. The presence of donor-specific antibodies was associated with reduced numbers of CD56(dim) NK cells. Moreover, in patients, down-modulation of CD16 and CD6 on CD56(dim) NK cells was observed with significant differences between Cyclosporin A- and Tac-treated patients. Tac-treatment was associated with decreased CD69, HLA-DR, and increased CD94/NKG2A expression in CD56(dim) NK cells indicating that the quality of the immunosuppressive treatment impinges on the peripheral NK cell repertoire. In vitro studies with peripheral blood mononuclear cells of healthy donors showed that this modulation of CD16, CD6, CD69, and HLA-DR could also be induced experimentally. The presence of calcineurin or mTOR inhibitors had also functional consequences regarding degranulation and interferon-γ-production against K562 target cells, respectively. In summary, we postulate that the NK cell composition in peripheral blood of kidney transplanted patients represents an important hallmark of the efficacy of immunosuppression and may be even informative for the immune status after transplantation in terms of rejection vs. drug-induced allograft tolerance. Thus, NK cells can serve as sensors for immunosuppression and may be utilized for future strategies of an individualized adjustment of immunosuppression.


An anti-phospholipase A2 receptor quantitative immunoassay and epitope analysis in membranous nephropathy reveals different antigenic domains of the receptor.

  • Astrid Behnert‎ et al.
  • PloS one‎
  • 2013‎

The phospholipase A2 receptor (PLA2R) was recently discovered as a target autoantigen in patients with idiopathic membranous nephropathy (IMN). Published evidence suggests that the autoantibodies directed towards a conformation dependent epitope are currently effectively detected by a cell based assay (CBA) utilizing indirect immunofluorescence (IIF) on tissue culture cells transfected with the PLA2R cDNA. Limitations of such IIF-CBA assays include observer dependent subjective evaluation of semi-quantitative test results and the protocols are not amenable to high throughput diagnostic testing. We developed a quantitative, observer independent, high throughput capture immunoassay for detecting PLA2R autoantibodies on an addressable laser bead immunoassay (ALBIA) platform. Since reactive domains of PLA2R (i.e. epitopes) could be used to improve diagnostic tests by using small peptides in various high throughput diagnostic platforms, we identified PLA2R epitopes that bound autoantibodies of IMN patients. These studies confirmed that inter-molecular epitope spreading occurs in IMN but use of the cognate synthetic peptides in immunoassays was unable to conclusively distinguish between IMN patients and normal controls. However, combinations of these peptides were able to effectively absorb anti-PLA2R reactivity in IIF-CBA and an immunoassay that employed a lysate derived from HEK cells tranfected with and overexpressing PLA2R. While we provide evidence of intermolecular epitope spreading, our data indicates that in addition to conformational epitopes, human anti-PLA2R reactivity in a commercially available CBA and an addressable laser bead immunoassay is significantly absorbed by peptides representing epitopes of PLA2R.


The tight junction protein ZO-2 and Janus kinase 1 mediate intercellular communications in vascular smooth muscle cells.

  • Natalia Tkachuk‎ et al.
  • Biochemical and biophysical research communications‎
  • 2011‎

Recent evidence points to a multifunctional role of ZO-2, the tight junction protein of the MAGUK (membrane-associated guanylate kinase-like) family. Though ZO-2 has been found in cell types lacking tight junction structures, such as vascular smooth muscle cells (VSMC), little is known about ZO-2 function in these cells. We provide evidence that ZO-2 mediates specific homotypic cell-to-cell contacts between VSMC. Using mass spectrometry we found that ZO-2 is associated with the non-receptor tyrosine kinase Jak1. By generating specific ZO-2 constructs we further found that the N-terminal fragment of ZO-2 molecule is responsible for this interaction. Adenovirus-based expression of Jak1 inactive mutant demonstrated that Jak1 mediates ZO-2 tyrosine phosphorylation. By means of RNA silencing, expression of Jak1 mutant form and fluorescently labeled ZO-2 fusion protein we further specified that active Jak1, but not Jak1 inactive mutant, mediates ZO-2 localization to the sites of intercellular contacts. We identified the urokinase receptor uPAR as a pre-requisite for these cellular events. Functional requirement of the revealed signaling complex for VSMC network formation was confirmed in experiments using Matrigel and in contraction assay. Our findings imply involvement of the ZO-2 tight junction independent signaling complex containing Jak1 and uPAR in VSMC intercellular communications. This mechanism may contribute to vascular remodeling in occlusive cardiovascular diseases and in arteriogenesis.


Impact of high glucose and transforming growth factor-β on bioenergetic profiles in podocytes.

  • Nicole Stieger‎ et al.
  • Metabolism: clinical and experimental‎
  • 2012‎

Diabetic nephropathy is the most common cause of chronic renal failure in industrialized countries. Depletion of podocytes plays an important role in the progression of diabetic glomerulopathy. Various factors in the diabetic milieu lead to serious podocyte stress driving the cells toward cell cycle arrest (p27(Kip1)), hypertrophy, detachment, and apoptosis. Mitochondria are responsible for oxidative phosphorylation and energy supply in podocytes. Recent studies indicated that mitochondrial dysfunction is a key factor in diabetic nephropathy. In the present study, we investigated metabolic profiles of podocytes under diabetic conditions. We examined oxygen consumption rates (OCRs) and oxidative phosphorylation complex activities in murine podocytes. Cells were exposed to high glucose for 48 hours, cultured for 10 passages under high-glucose conditions (30 mmol/L), or incubated with transforming growth factor-β (5 ng/mL) for 24 hours. After prolonged exposure to high glucose, podocytes showed a significantly increased OCR at baseline and also a higher OCR after addition of oligomycin, indicating significant changes in mitochondrial energy metabolism. Higher OCRs after inhibition of respiration by rotenone also indicated changes in nonmitochondrial respiration. Podocytes stimulated with a proapoptotic concentration of transforming growth factor-β displayed similar bioenergetic profiles, even with decreased citrate synthase activity. In all tested conditions, we found a higher cellular nicotinamide adenine dinucleotide content and changes in activities of respiratory chain complexes. In summary, we provide for the first time evidence that key factors of the diabetic milieu induce changes in glucose metabolism and mitochondrial function in podocytes.


Autoimmunity in CD73/Ecto-5'-nucleotidase deficient mice induces renal injury.

  • Cornelia Blume‎ et al.
  • PloS one‎
  • 2012‎

Extracellular adenosine formed by 5'-ectonucleotidase (CD73) is involved in tubulo-glomerular feedback in the kidney but is also known to be an important immune modulator. Since CD73(-/-)mutant mice exhibit a vascular proinflammatory phenotype, we asked whether long term lack of CD73 causes inflammation related kidney pathologies. CD73(-/-)mice (13 weeks old) showed significantly increased low molecule proteinuria compared to C57BL6 wild type controls (4.8 ≥ 0.52 vs. 2.9 ± 0.54 mg/24 h, p<0.03). Total proteinuria increased to 5.97 ± 0.78 vs. 2.55 ± 0.35 mg/24 h at 30 weeks (p<0.01) whereas creatinine clearance decreased (0.161 ± 0.02 vs. 0.224 ± 0.02 ml/min). We observed autoimmune inflammation in CD73(-/-)mice with glomerulitis and peritubular capillaritis, showing glomerular deposition of IgG and C3 and enhanced presence of CD11b, CD8, CD25 as well as GR-1-positive cells in the interstitium. Vascular inflammation was associated with enhanced serum levels of the cytokines IL-18 and TNF-α as well as VEGF and the chemokine MIP-2 (CXCL-2) in CD73(-/-)mice, whereas chemokines and cytokines in the kidney tissue were unaltered or reduced. In CD73(-/-)mice glomeruli, we found a reduced number of podocytes and endothelial fenestrations, increased capillaries per glomeruli, endotheliosis and enhanced tubular fibrosis. Our results show that adult CD73(-/-)mice exhibit spontaneous proteinuria and renal functional deterioration even without exogenous stress factors. We have identified an autoimmune inflammatory phenotype comprising the glomerular endothelium, leading to glomeruli inflammation and injury and to a cellular infiltrate of the renal interstitium. Thus, long term lack of CD73 reduced renal function and is associated with autoimmune inflammation.


Urokinase receptor counteracts vascular smooth muscle cell functional changes induced by surface topography.

  • Yulia Kiyan‎ et al.
  • Theranostics‎
  • 2013‎

Current treatments for human coronary artery disease necessitate the development of the next generations of vascular bioimplants. Recent reports provide evidence that controlling cell orientation and morphology through topographical patterning might be beneficial for bioimplants and tissue engineering scaffolds. However, a concise understanding of cellular events underlying cell-biomaterial interaction remains missing. In this study, applying methods of laser material processing, we aimed to obtain useful markers to guide in the choice of better vascular biomaterials. Our data show that topographically treated human primary vascular smooth muscle cells (VSMC) have a distinct differentiation profile. In particular, cultivation of VSMC on the microgrooved biocompatible polymer E-shell induces VSMC modulation from synthetic to contractile phenotype and directs formation and maintaining of cell-cell communication and adhesion structures. We show that the urokinase receptor (uPAR) interferes with VSMC behavior on microstructured surfaces and serves as a critical regulator of VSMC functional fate. Our findings suggest that microtopography of the E-shell polymer could be important in determining VSMC phenotype and cytoskeleton organization. They further suggest uPAR as a useful target in the development of predictive models for clinical VSMC phenotyping on functional advanced biomaterials.


Dual inhibition of classical protein kinase C-α and protein kinase C-β isoforms protects against experimental murine diabetic nephropathy.

  • Jan Menne‎ et al.
  • Diabetes‎
  • 2013‎

Activation of protein kinase C (PKC) has been implicated in the pathogenesis of diabetic nephropathy with proteinuria and peritubular extracellular matrix production. We have previously shown that the PKC isoforms α and β mediate different cellular effects. PKC-β contributes to hyperglycemia-induced renal matrix production, whereby PKC-α is involved in the development of albuminuria. We further tested this hypothesis by deletion of both isoforms and used a PKC inhibitor. We analyzed the phenotype of nondiabetic and streptozotocin (STZ)-induced diabetic homozygous PKC-α/β double-knockout mice (PKC-α/β(-/-)). After 8 weeks of diabetes mellitus, the high-glucose-induced renal and glomerular hypertrophy as well as transforming growth factor-β1) and extracellular matrix production were diminished in the PKC-α/β(-/-) mice compared with wild-type controls. Urinary albumin/creatinine ratio also was significantly reduced, however, it was not completely abolished in diabetic PKC-α/β(-/-) mice. Treatment with CGP41252, which inhibits PKC-α and PKC-β, is able to prevent the development of albuminuria and to reduce existing albuminuria in type 1 (STZ model) or type 2 (db/db model) diabetic mice. These results support our hypothesis that PKC-α and PKC-β contribute to the pathogenesis of diabetic nephropathy, and that dual inhibition of the classical PKC isoforms is a suitable therapeutic strategy in the prevention and treatment of diabetic nephropathy.


Detection of circulating microparticles by flow cytometry: influence of centrifugation, filtration of buffer, and freezing.

  • Emily Dey-Hazra‎ et al.
  • Vascular health and risk management‎
  • 2010‎

The clinical importance of microparticles resulting from vesiculation of platelets and other blood cells is increasingly recognized, although no standardized method exists for their measurement. Only a few studies have examined the analytical and preanalytical steps and variables affecting microparticle detection. We focused our analysis on microparticle detection by flow cytometry. The goal of our study was to analyze the effects of different centrifugation protocols looking at different durations of high and low centrifugation speeds. We also analyzed the effect of filtration of buffer and long-term freezing on microparticle quantification, as well as the role of Annexin V in the detection of microparticles. Absolute and platelet-derived microparticles were 10- to 15-fold higher using initial lower centrifugation speeds at 1500 × g compared with protocols using centrifugation speeds at 5000 × g (P < 0.01). A clear separation between true events and background noise was only achieved using higher centrifugation speeds. Filtration of buffer with a 0.2 μm filter reduced a significant amount of background noise. Storing samples for microparticle detection at -80°C decreased microparticle levels at days 28, 42, and 56 (P < 0.05 for all comparisons with fresh samples). We believe that staining with Annexin V is necessary to distinguish true events from cell debris or precipitates. Buffers should be filtered and fresh samples should be analyzed, or storage periods will have to be standardized. Higher centrifugation speeds should be used to minimize contamination by smaller size platelets.


The tyrosine phosphatase SHP-2 controls urokinase-dependent signaling and functions in human vascular smooth muscle cells.

  • Julia Kiyan‎ et al.
  • Experimental cell research‎
  • 2009‎

The urokinase (uPA)/urokinase receptor (uPAR) multifunctional system is an important mediator of functional behaviour of human vascular smooth muscle cells (VSMC). uPAR associates with platelet-derived growth factor receptor beta (PDGFR-beta), which serves as a transmembrane adaptor for uPAR in VSMC, to transduce intracellular signaling and initiate functional changes. The precise and rapid propagation of these signaling cascades demands both strict and flexible regulatory mechanisms that remain unexplored. We provide evidence that the tyrosine phosphatase SHP-2 mediates these processes. uPA regulated SHP-2 phosphorylation, catalytic activity, and its co-localization and association with the PDGFR-beta. Active PDGFR-beta was required for the uPA-induced SHP-2 phosphorylation. uPAR-directed STAT1 pathway was disturbed in cells expressing SHP-2 inactive mutant. Both, cell proliferation and migration were impaired in VSMC with downregulated SHP-2. Elucidating the underlying mechanisms, we found that uPA induced SHP-2 recruitment to lipid rafts. Disruption of rafts abolished uPA-related control of SHP-2 phosphorylation, its association with PDGFR-beta and finally the VSMC functional responses. Our results demonstrate that SHP-2 plays an important role in uPA-directed signaling and functional control of human VSMC and suggest that this phosphatase might contribute to the pathogenesis of the uPA-related vascular remodeling.


Podocytic PKC-alpha is regulated in murine and human diabetes and mediates nephrin endocytosis.

  • Irini Tossidou‎ et al.
  • PloS one‎
  • 2010‎

Microalbuminuria is an early lesion during the development of diabetic nephropathy. The loss of high molecular weight proteins in the urine is usually associated with decreased expression of slit diaphragm proteins. Nephrin, is the major component of the glomerular slit diaphragm and loss of nephrin has been well described in rodent models of experimental diabetes as well as in human diabetic nephropathy.


Statins attenuate ischemia-reperfusion injury by inducing heme oxygenase-1 in infiltrating macrophages.

  • Faikah Gueler‎ et al.
  • The American journal of pathology‎
  • 2007‎

Statins induce heme oxygenase-1 (HO-1) in several cell types, such as vascular smooth muscle cells, endothelial cells, and macrophages. The present study assessed the role of statin-induced HO-1 up-regulation on circulating monocytes/macrophages and their contribution in preventing renal ischemia-reperfusion (IR) injury in a rat model. Cerivastatin was administered via gavage (0.5 mg/kg) for 3 days before IR injury; controls received vehicle. Statin pretreatment reduced renal damage and attenuated renal dysfunction (P < 0.05) after IR injury. The protective statin pretreatment effect was completely abolished by cotreatment with tin protoporphyrin IX (Sn-PP), a competitive HO inhibitor. IR increased HO-1 expression at the transcript and protein level in renal tissue. This effect was significantly more evident (P < 0.05) in the statin-pretreated animals 24 hours after IR injury. We identified infiltrating macrophages as the major source of tissue HO-1 production. Moreover, in ancillary cell culture (monocyte cell line) and in in vivo experiments (isolation of circulating monocytes), we confirmed that statins regulate HO-1 expression in these cells. We conclude that statin treatment up-regulates HO-1 in circulating monocytes/macrophages in vivo and in vitro. We hypothesize that local delivery of HO-1 from infiltrating macrophages exerts anti-inflammatory effects after IR injury and thereby may reduce tissue destruction.


Overexpression of preeclampsia induced microRNA-26a-5p leads to proteinuria in zebrafish.

  • Janina Müller-Deile‎ et al.
  • Scientific reports‎
  • 2018‎

So far the pathomechanism of preeclampsia in pregnancy is focussed on increased circulating levels of soluble fms-like tyrosin kinase-1 (sFLT-1) that neutralizes glomerular VEGF-A expression and prevents its signaling at the glomerular endothelium. As a result of changed glomerular VEGF-A levels endotheliosis and podocyte foot process effacement are typical morphological features of preeclampsia. Recently, microRNA-26a-5p (miR-26a-5p) was described to be also upregulated in the preeclamptic placenta. We found that miR-26a-5p targets VEGF-A expression by means of PIK3C2α in cultured human podocytes and that miR-26a-5p overexpression in zebrafish causes proteinuria, edema, glomerular endotheliosis and podocyte foot process effacement. Interestingly, recombinant zebrafish Vegf-Aa protein could rescue glomerular changes induced by miR-26a-5p. In a small pilot study, preeclamptic patients with podocyte damage identified by podocyturia, expressed significantly more urinary miR-26a-5p compared to healthy controls. Thus, functional and ultrastructural glomerular changes after miR-26a-5p overexpression can resemble the findings seen in preeclampsia and indicate a potential pathophysiological role of miR-26a-5p in addition to sFLT-1 in this disease.


Pharmacological Tie2 activation in kidney transplantation.

  • Kristina Thamm‎ et al.
  • World journal of transplantation‎
  • 2016‎

To investigate the therapeutic potential of vasculotide (VT) - a Tie2 activating therapeutic - in kidney transplantation.


Podocytes regulate the glomerular basement membrane protein nephronectin by means of miR-378a-3p in glomerular diseases.

  • Janina Müller-Deile‎ et al.
  • Kidney international‎
  • 2017‎

The pathophysiology of many proteinuric kidney diseases is poorly understood, and microRNAs (miRs) regulation of these diseases has been largely unexplored. Here, we tested whether miR-378a-3p is a novel regulator of glomerular diseases. MiR-378a-3p has two predicted targets relevant to glomerular function, the glomerular basement membrane matrix component, nephronectin (NPNT), and vascular endothelial growth factor VEGF-A. In zebrafish (Danio rerio), miR-378a-3p mimic injection or npnt knockdown by a morpholino oligomer caused an identical phenotype consisting of edema, proteinuria, podocyte effacement, and widening of the glomerular basement membrane in the lamina rara interna. Zebrafish vegf-A protein could not rescue this phenotype. However, mouse Npnt constructs containing a mutated 3'UTR region prevented the phenotype caused by miR-378a-3p mimic injection. Overexpression of miR-378a-3p in mice confirmed glomerular dysfunction in a mammalian model. Biopsies from patients with focal segmental glomerulosclerosis and membranous nephropathy had increased miR-378a-3p expression and reduced glomerular levels of NPNT. Thus, miR-378a-3p-mediated suppression of the glomerular matrix protein NPNT is a novel mechanism for proteinuria development in active glomerular diseases.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: