2024MAY02: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 14 papers out of 14 papers

The Zic family homologue Odd-paired regulates Alk expression in Drosophila.

  • Patricia Mendoza-García‎ et al.
  • PLoS genetics‎
  • 2017‎

The Anaplastic Lymphoma Kinase (Alk) receptor tyrosine kinase (RTK) plays a critical role in the specification of founder cells (FCs) in the Drosophila visceral mesoderm (VM) during embryogenesis. Reporter gene and CRISPR/Cas9 deletion analysis reveals enhancer regions in and upstream of the Alk locus that influence tissue-specific expression in the amnioserosa (AS), the VM and the epidermis. By performing high throughput yeast one-hybrid screens (Y1H) with a library of Drosophila transcription factors (TFs) we identify Odd-paired (Opa), the Drosophila homologue of the vertebrate Zic family of TFs, as a novel regulator of embryonic Alk expression. Further characterization identifies evolutionarily conserved Opa-binding cis-regulatory motifs in one of the Alk associated enhancer elements. Employing Alk reporter lines as well as CRISPR/Cas9-mediated removal of regulatory elements in the Alk locus, we show modulation of Alk expression by Opa in the embryonic AS, epidermis and VM. In addition, we identify enhancer elements that integrate input from additional TFs, such as Binou (Bin) and Bagpipe (Bap), to regulate VM expression of Alk in a combinatorial manner. Taken together, our data show that the Opa zinc finger TF is a novel regulator of embryonic Alk expression.


Hippo, TGF-β, and Src-MAPK pathways regulate transcription of the upd3 cytokine in Drosophila enterocytes upon bacterial infection.

  • Philip Houtz‎ et al.
  • PLoS genetics‎
  • 2017‎

Cytokine signaling is responsible for coordinating conserved epithelial regeneration and immune responses in the digestive tract. In the Drosophila midgut, Upd3 is a major cytokine, which is induced in enterocytes (EC) and enteroblasts (EB) upon oral infection, and initiates intestinal stem cell (ISC) dependent tissue repair. To date, the genetic network directing upd3 transcription remains largely uncharacterized. Here, we have identified the key infection-responsive enhancers of the upd3 gene and show that distinct enhancers respond to various stresses. Furthermore, through functional genetic screening, bioinformatic analyses and yeast one-hybrid screening, we determined that the transcription factors Scalloped (Sd), Mothers against dpp (Mad), and D-Fos are principal regulators of upd3 expression. Our study demonstrates that upd3 transcription in the gut is regulated by the activation of multiple pathways, including the Hippo, TGF-β/Dpp, and Src, as well as p38-dependent MAPK pathways. Thus, these essential pathways, which are known to control ISC proliferation cell-autonomously, are also activated in ECs to promote tissue turnover the regulation of upd3 transcription.


Evolutionary novelty in the apoptotic pathway of aphids.

  • Mélanie Ribeiro Lopes‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2020‎

Apoptosis, a conserved form of programmed cell death, shows interspecies differences that may reflect evolutionary diversification and adaptation, a notion that remains largely untested. Among insects, the most speciose animal group, the apoptotic pathway has only been fully characterized in Drosophila melanogaster, and apoptosis-related proteins have been studied in a few other dipteran and lepidopteran species. Here, we studied the apoptotic pathway in the aphid Acyrthosiphon pisum, an insect pest belonging to the Hemiptera, an earlier-diverging and distantly related order. We combined phylogenetic analyses and conserved domain identification to annotate the apoptotic pathway in A. pisum and found low caspase diversity and a large expansion of its inhibitory part, with 28 inhibitors of apoptosis (IAPs). We analyzed the spatiotemporal expression of a selected set of pea aphid IAPs and showed that they are differentially expressed in different life stages and tissues, suggesting functional diversification. Five IAPs are specifically induced in bacteriocytes, the specialized cells housing symbiotic bacteria, during their cell death. We demonstrated the antiapoptotic role of these five IAPs using heterologous expression in a tractable in vivo model, the Drosophila melanogaster developing eye. Interestingly, IAPs with the strongest antiapoptotic potential contain two BIR and two RING domains, a domain association that has not been observed in any other species. We finally analyzed all available aphid genomes and found that they all show large IAP expansion, with new combinations of protein domains, suggestive of evolutionarily novel aphid-specific functions.


Genome-wide analysis identifies Homothorax and Extradenticle as regulators of insulin in Drosophila Insulin-Producing cells.

  • Mattias Winant‎ et al.
  • PLoS genetics‎
  • 2022‎

Drosophila Insulin-Producing Cells (IPCs) are the main production site of the Drosophila Insulin-like peptides or dilps which have key roles in regulating growth, development, reproduction, lifespan and metabolism. To better understand the signalling pathways and transcriptional networks that are active in the IPCs we queried publicly available transcriptome data of over 180 highly inbred fly lines for dilp expression and used dilp expression as the input for a Genome-wide association study (GWAS). This resulted in the identification of variants in 125 genes that were associated with variation in dilp expression. The function of 57 of these genes in the IPCs was tested using an RNAi-based approach. We found that IPC-specific depletion of most genes resulted in differences in expression of one or more of the dilps. We then elaborated further on one of the candidate genes with the strongest effect on dilp expression, Homothorax, a transcription factor known for its role in eye development. We found that Homothorax and its binding partner Extradenticle are involved in regulating dilp2, -3 and -5 expression and that genetic depletion of both TFs shows phenotypes associated with reduced insulin signalling. Furthermore, we provide evidence that other transcription factors involved in eye development are also functional in the IPCs. In conclusion, we showed that this expression level-based GWAS approach identified genetic regulators implicated in IPC function and dilp expression.


Conserved role for the Drosophila Pax6 homolog Eyeless in differentiation and function of insulin-producing neurons.

  • Jason Clements‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2008‎

Insulin/insulin-like growth factor (IGF) signaling constitutes an evolutionarily conserved pathway that controls growth, energy homeostasis, and longevity. In Drosophila melanogaster, key components of this pathway are the insulin-like peptides (Dilps). The major source of Dilps is a cluster of large neurons in the brain, the insulin-producing cells (IPCs). The genetic control of IPC development and function is poorly understood. Here, we demonstrate that the Pax6 homolog Eyeless is required in the IPCs to control their differentiation and function. Loss of eyeless results in phenotypes associated with loss of insulin signaling, including decreased animal size and increased carbohydrate levels in larval hemolymph. We show that mutations in eyeless lead to defective differentiation and morphologically abnormal IPCs. We also demonstrate that Eyeless controls IPC function by the direct transcriptional control of one of the major Dilps, dilp5. We propose that Eyeless has an evolutionarily conserved role in IPCs with remarkable similarities to the role of vertebrate Pax6 in beta cells of the pancreas.


A Comprehensive Drosophila melanogaster Transcription Factor Interactome.

  • Leila Shokri‎ et al.
  • Cell reports‎
  • 2019‎

Combinatorial interactions among transcription factors (TFs) play essential roles in generating gene expression specificity and diversity in metazoans. Using yeast 2-hybrid (Y2H) assays on nearly all sequence-specific Drosophila TFs, we identified 1,983 protein-protein interactions (PPIs), more than doubling the number of currently known PPIs among Drosophila TFs. For quality assessment, we validated a subset of our interactions using MITOMI and bimolecular fluorescence complementation assays. We combined our interactome with prior PPI data to generate an integrated Drosophila TF-TF binary interaction network. Our analysis of ChIP-seq data, integrating PPI and gene expression information, uncovered different modes by which interacting TFs are recruited to DNA. We further demonstrate the utility of our Drosophila interactome in shedding light on human TF-TF interactions. This study reveals how TFs interact to bind regulatory elements in vivo and serves as a resource of Drosophila TF-TF binary PPIs for understanding tissue-specific gene regulation.


Sugar Promotes Feeding in Flies via the Serine Protease Homolog scarface.

  • Naveen Prasad‎ et al.
  • Cell reports‎
  • 2018‎

A balanced diet of macronutrients is critical for animal health. A lack of specific elements can have profound effects on behavior, reproduction, and lifespan. Here, we used Drosophila to understand how the brain responds to carbohydrate deprivation. We found that serine protease homologs (SPHs) are enriched among genes that are transcriptionally regulated in flies deprived of carbohydrates. Stimulation of neurons expressing one of these SPHs, Scarface (Scaf), or overexpression of scaf positively regulates feeding on nutritious sugars, whereas inhibition of these neurons or knockdown of scaf reduces feeding. This modulation of food intake occurs only in sated flies while hunger-induced feeding is unaffected. Furthermore, scaf expression correlates with the presence of sugar in the food. As Scaf and Scaf neurons promote feeding independent of the hunger state, and the levels of scaf are positively regulated by the presence of sugar, we conclude that scaf mediates the hedonic control of feeding.


Conservation of transcription factor binding specificities across 600 million years of bilateria evolution.

  • Kazuhiro R Nitta‎ et al.
  • eLife‎
  • 2015‎

Divergent morphology of species has largely been ascribed to genetic differences in the tissue-specific expression of proteins, which could be achieved by divergence in cis-regulatory elements or by altering the binding specificity of transcription factors (TFs). The relative importance of the latter has been difficult to assess, as previous systematic analyses of TF binding specificity have been performed using different methods in different species. To address this, we determined the binding specificities of 242 Drosophila TFs, and compared them to human and mouse data. This analysis revealed that TF binding specificities are highly conserved between Drosophila and mammals, and that for orthologous TFs, the similarity extends even to the level of very subtle dinucleotide binding preferences. The few human TFs with divergent specificities function in cell types not found in fruit flies, suggesting that evolution of TF specificities contributes to emergence of novel types of differentiated cells.


A yeast one-hybrid and microfluidics-based pipeline to map mammalian gene regulatory networks.

  • Carine Gubelmann‎ et al.
  • Molecular systems biology‎
  • 2013‎

The comprehensive mapping of gene promoters and enhancers has significantly improved our understanding of how the mammalian regulatory genome is organized. An important challenge is to elucidate how these regulatory elements contribute to gene expression by identifying their trans-regulatory inputs. Here, we present the generation of a mouse-specific transcription factor (TF) open-reading frame clone library and its implementation in yeast one-hybrid assays to enable large-scale protein-DNA interaction detection with mouse regulatory elements. Once specific interactions are identified, we then use a microfluidics-based method to validate and precisely map them within the respective DNA sequences. Using well-described regulatory elements as well as orphan enhancers, we show that this cross-platform pipeline characterizes known and uncovers many novel TF-DNA interactions. In addition, we provide evidence that several of these novel interactions are relevant in vivo and aid in elucidating the regulatory architecture of enhancers.


Potential Direct Regulators of the Drosophila yellow Gene Identified by Yeast One-Hybrid and RNAi Screens.

  • Gizem Kalay‎ et al.
  • G3 (Bethesda, Md.)‎
  • 2016‎

The regulation of gene expression controls development, and changes in this regulation often contribute to phenotypic evolution. Drosophila pigmentation is a model system for studying evolutionary changes in gene regulation, with differences in expression of pigmentation genes such as yellow that correlate with divergent pigment patterns among species shown to be caused by changes in cis- and trans-regulation. Currently, much more is known about the cis-regulatory component of divergent yellow expression than the trans-regulatory component, in part because very few trans-acting regulators of yellow expression have been identified. This study aims to improve our understanding of the trans-acting control of yellow expression by combining yeast-one-hybrid and RNAi screens for transcription factors binding to yellow cis-regulatory sequences and affecting abdominal pigmentation in adults, respectively. Of the 670 transcription factors included in the yeast-one-hybrid screen, 45 showed evidence of binding to one or more sequence fragments tested from the 5' intergenic and intronic yellow sequences from D. melanogaster, D. pseudoobscura, and D. willistoni, suggesting that they might be direct regulators of yellow expression. Of the 670 transcription factors included in the yeast-one-hybrid screen, plus another TF previously shown to be genetically upstream of yellow, 125 were also tested using RNAi, and 32 showed altered abdominal pigmentation. Nine transcription factors were identified in both screens, including four nuclear receptors related to ecdysone signaling (Hr78, Hr38, Hr46, and Eip78C). This finding suggests that yellow expression might be directly controlled by nuclear receptors influenced by ecdysone during early pupal development when adult pigmentation is forming.


Genomic variation and its impact on gene expression in Drosophila melanogaster.

  • Andreas Massouras‎ et al.
  • PLoS genetics‎
  • 2012‎

Understanding the relationship between genetic and phenotypic variation is one of the great outstanding challenges in biology. To meet this challenge, comprehensive genomic variation maps of human as well as of model organism populations are required. Here, we present a nucleotide resolution catalog of single-nucleotide, multi-nucleotide, and structural variants in 39 Drosophila melanogaster Genetic Reference Panel inbred lines. Using an integrative, local assembly-based approach for variant discovery, we identify more than 3.6 million distinct variants, among which were more than 800,000 unique insertions, deletions (indels), and complex variants (1 to 6,000 bp). While the SNP density is higher near other variants, we find that variants themselves are not mutagenic, nor are regions with high variant density particularly mutation-prone. Rather, our data suggest that the elevated SNP density around variants is mainly due to population-level processes. We also provide insights into the regulatory architecture of gene expression variation in adult flies by mapping cis-expression quantitative trait loci (cis-eQTLs) for more than 2,000 genes. Indels comprise around 10% of all cis-eQTLs and show larger effects than SNP cis-eQTLs. In addition, we identified two-fold more gene associations in males as compared to females and found that most cis-eQTLs are sex-specific, revealing a partial decoupling of the genomic architecture between the sexes as well as the importance of genetic factors in mediating sex-biased gene expression. Finally, we performed RNA-seq-based allelic expression imbalance analyses in the offspring of crosses between sequenced lines, which revealed that the majority of strong cis-eQTLs can be validated in heterozygous individuals.


Topology and dynamics of the zebrafish segmentation clock core circuit.

  • Christian Schröter‎ et al.
  • PLoS biology‎
  • 2012‎

During vertebrate embryogenesis, the rhythmic and sequential segmentation of the body axis is regulated by an oscillating genetic network termed the segmentation clock. We describe a new dynamic model for the core pace-making circuit of the zebrafish segmentation clock based on a systematic biochemical investigation of the network's topology and precise measurements of somitogenesis dynamics in novel genetic mutants. We show that the core pace-making circuit consists of two distinct negative feedback loops, one with Her1 homodimers and the other with Her7:Hes6 heterodimers, operating in parallel. To explain the observed single and double mutant phenotypes of her1, her7, and hes6 mutant embryos in our dynamic model, we postulate that the availability and effective stability of the dimers with DNA binding activity is controlled in a "dimer cloud" that contains all possible dimeric combinations between the three factors. This feature of our model predicts that Hes6 protein levels should oscillate despite constant hes6 mRNA production, which we confirm experimentally using novel Hes6 antibodies. The control of the circuit's dynamics by a population of dimers with and without DNA binding activity is a new principle for the segmentation clock and may be relevant to other biological clocks and transcriptional regulatory networks.


GETPrime: a gene- or transcript-specific primer database for quantitative real-time PCR.

  • Carine Gubelmann‎ et al.
  • Database : the journal of biological databases and curation‎
  • 2011‎

The vast majority of genes in humans and other organisms undergo alternative splicing, yet the biological function of splice variants is still very poorly understood in large part because of the lack of simple tools that can map the expression profiles and patterns of these variants with high sensitivity. High-throughput quantitative real-time polymerase chain reaction (qPCR) is an ideal technique to accurately quantify nucleic acid sequences including splice variants. However, currently available primer design programs do not distinguish between splice variants and also differ substantially in overall quality, functionality or throughput mode. Here, we present GETPrime, a primer database supported by a novel platform that uniquely combines and automates several features critical for optimal qPCR primer design. These include the consideration of all gene splice variants to enable either gene-specific (covering the majority of splice variants) or transcript-specific (covering one splice variant) expression profiling, primer specificity validation, automated best primer pair selection according to strict criteria and graphical visualization of the latter primer pairs within their genomic context. GETPrime primers have been extensively validated experimentally, demonstrating high transcript specificity in complex samples. Thus, the free-access, user-friendly GETPrime database allows fast primer retrieval and visualization for genes or groups of genes of most common model organisms, and is available at http://updepla1srv1.epfl.ch/getprime/. Database URL: http://deplanckelab.epfl.ch.


A large-scale, in vivo transcription factor screen defines bivalent chromatin as a key property of regulatory factors mediating Drosophila wing development.

  • Claus Schertel‎ et al.
  • Genome research‎
  • 2015‎

Transcription factors (TFs) are key regulators of cell fate. The estimated 755 genes that encode DNA binding domain-containing proteins comprise ∼ 5% of all Drosophila genes. However, the majority has remained uncharacterized so far due to the lack of proper genetic tools. We generated 594 site-directed transgenic Drosophila lines that contain integrations of individual UAS-TF constructs to facilitate spatiotemporally controlled misexpression in vivo. All transgenes were expressed in the developing wing, and two-thirds induced specific phenotypic defects. In vivo knockdown of the same genes yielded a phenotype for 50%, with both methods indicating a great potential for misexpression to characterize novel functions in wing growth, patterning, and development. Thus, our UAS-TF library provides an important addition to the genetic toolbox of Drosophila research, enabling the identification of several novel wing development-related TFs. In parallel, we established the chromatin landscape of wing imaginal discs by ChIP-seq analyses of five chromatin marks and RNA Pol II. Subsequent clustering revealed six distinct chromatin states, with two clusters showing enrichment for both active and repressive marks. TFs that carry such "bivalent" chromatin are highly enriched for causing misexpression phenotypes in the wing, and analysis of existing expression data shows that these TFs tend to be differentially expressed across the wing disc. Thus, bivalently marked chromatin can be used as a marker for spatially regulated TFs that are functionally relevant in a developing tissue.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: