Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 264 papers

miRNA let-7b modulates macrophage polarization and enhances tumor-associated macrophages to promote angiogenesis and mobility in prostate cancer.

  • Zhigang Wang‎ et al.
  • Scientific reports‎
  • 2016‎

Macrophage polarization is a highly plastic physiological process that responds to a variety of environmental factors by changing macrophage phenotype and function. Tumor-associated macrophages (TAMs) are generally recognized as promoting tumor progression. As universal regulators, microRNAs (miRNAs) are functionally involved in numerous critical cellular processes including macrophage polarization. Let-7b, a miRNA, has differential expression patterns in inflamed tissues compared with healthy controls. However, whether and how miRNA let-7b regulates macrophage phenotype and function is unclear. In this report, we find that up-regulation of let-7b is characteristic of prostatic TAMs, and down-regulation of let-7b in TAMs leads to changes in expression profiles of inflammatory cytokines, such as IL-12, IL-23, IL-10 and TNF-α. As a result, TAMs treated with let-7b inhibitors reduce angiogenesis and prostate carcinoma (PCa) cell mobility. Let-7b may play a vital role in regulating macrophage polarization, thus modulating the prognosis of prostate cancer.


Identification and characterization of a high kernel weight mutant induced by gamma radiation in wheat (Triticum aestivum L.).

  • Xuejiao Cheng‎ et al.
  • BMC genetics‎
  • 2015‎

Inducing mutations are considered to be an effective way to create novel genetic variations and hence novel agronomical traits in wheat. This study was conducted to assess the genetic differences between Shi4185 and its mutant line Fu4185, produced by gamma radiation with larger grain, and to identify quantitative trait loci (QTLs) for thousand kernel weight (TKW).


Low-dose tacrolimus combined with donor-derived mesenchymal stem cells after renal transplantation: a prospective, non-randomized study.

  • Guang-Hui Pan‎ et al.
  • Oncotarget‎
  • 2016‎

Calcineurin inhibitors, including tacrolimus, are largely responsible for advances in allotransplantation. However, the nephrotoxicity associated with these immunosuppressants impairs patients' long-term survival after renal allograft. Therefore, novel regimens that minimize or even eliminate calcineurin inhibitors could improve transplantation outcomes. In this pilot study, we investigated the use of low-dose tacrolimus in combination with mesenchymal stem cells (MSCs), which are immunosuppressive and prolong allograft survival in experimental organ transplant models. Donor-derived, bone marrow MSCs combined with a sparing dose of tacrolimus (0.04-0.05 mg/kg/day) were administered to 16 de novo living-related kidney transplant recipients; 16 other patients received a standard dose of tacrolimus (0.07-0.08 mg/kg/day). The safety of MSC infusion, acute rejection, graft function, graft survival, and patient survival were evaluated over ≥24 months following kidney transplantation. All patients survived and had stable renal function at the 24 month follow-up. The combination of low-dose tacrolimus and MSCs was as effective as standard dose tacrolimus in maintaining graft survival at least 2 years after transplantation. In addition, both groups had similar urea, urine protein, urinary RBC, urinary WBC, 24-h urine protein, and creatinine clearance rates from 7 days to 24 months after transplantation. Furthermore, no differences in the proportion of lymphocytes, CD19, CD3, CD34, CD38, and natural killer cells were detected between the control and experimental groups. None of the MSC recipients experienced immediate or long-term toxicity from the treatment. This preliminary data suggests that the addition of MSCs permits the use of lower dosages of nephrotoxic calcineurin inhibitors following renal transplantation.


Failure of Elevating Calcium Induces Oxidative Stress Tolerance and Imparts Cisplatin Resistance in Ovarian Cancer Cells.

  • Liwei Ma‎ et al.
  • Aging and disease‎
  • 2016‎

Cisplatin is a commonly used chemotherapeutic drug, used for the treatment of malignant ovarian cancer, but acquired resistance limits its application. There is therefore an overwhelming need to understand the mechanism of cisplatin resistance in ovarian cancer, that is, ovarian cancer cells are insensitive to cisplatin treatment. Here, we show that failure of elevating calcium and oxidative stress tolerance play key roles in cisplatin resistance in ovarian cancer cell lines. Cisplatin induces an increase in oxidative stress and alters intracellular Ca(2+) concentration, including cytosolic and mitochondrial Ca(2+) in cisplatin-sensitive SKOV3 cells, but not in cisplatin-resistant SKOV3/DDP cells. Cisplatin induces mitochondrial damage and triggers the mitochondrial apoptotic pathway in cisplatin-sensitive SKOV3 cells, but rarely in cisplatin-resistant SKOV3/DDP cells. Inhibition of calcium signaling attenuates cisplatin-induced oxidative stress and intracellular Ca(2+) overload in cisplatin-sensitive SKOV3 cells. Moreover, in vivo xenograft models of nude mouse, cisplatin significantly reduced the growth rates of tumors originating from SKOV3 cells, but not that of SKOV3/DDP cells. Collectively, our data indicate that failure of calcium up-regulation mediates cisplatin resistance by alleviating oxidative stress in ovarian cancer cells. Our results highlight potential therapeutic strategies to improve cisplatin resistance.


Effect of RAS status on anti-EGFR monoclonal antibodies + 5-FU infusion-based chemotherapy in first-line treatment of metastatic colorectal cancer: A meta-analysis.

  • Mingyi Zhou‎ et al.
  • Meta gene‎
  • 2016‎

To investigate the effect of RAS on anti-EGFR moAb + 5-FU infusion based chemotherapy in first-line treatment of mCRC.


Discovery of piRNAs Pathway Associated with Early-Stage Spermatogenesis in Chicken.

  • Lu Xu‎ et al.
  • PloS one‎
  • 2016‎

Piwi-interacting RNAs (piRNAs) play a key role in spermatogenesis. Here, we describe the piRNAs profiling of primordial germ cells (PGCs), spermatogonial stem cells (SSCs), and the spermatogonium (Sp) during early-stage spermatogenesis in chicken. We obtained 31,361,989 reads from PGCs, 31,757,666 reads from SSCs, and 46,448,327 reads from Sp cells. The length distribution of piRNAs in the three samples showed peaks at 33 nt. The resulting genes were subsequently annotated against the Gene Ontology (GO) database. Five genes (RPL7A, HSPA8, Pum1, CPXM2, and PRKCA) were found to be involved in cellular processes. Interactive pathway analysis (IPA) further revealed three important pathways in early-stage spermatogenesis including the FGF, Wnt, and EGF receptor signaling pathways. The gene Pum1 was found to promote germline stem cell proliferation, but it also plays a role in spermatogenesis. In conclusion, we revealed characteristics of piRNAs during early spermatogonial development in chicken and provided the basis for future research.


Bufalin inhibits TGF-β-induced epithelial-to-mesenchymal transition and migration in human lung cancer A549 cells by downregulating TGF-β receptors.

  • Lei Zhao‎ et al.
  • International journal of molecular medicine‎
  • 2015‎

The epithelial-to-mesenchymal transition (EMT) is a well-known prerequisite for cancer cells to acquire the migratory and invasive capacity, and to subsequently metastasize. Bufalin is one of the major active components of the traditional Chinese medicine Chan Su, and accumulating evidence has shown its anticancer effect in multipe types of cancer. However, the role of bufalin in transforming growth factor‑β (TGF‑β)‑induced EMT and migration remains unclear. In the present study, the effect of bufalin on TGF‑β‑induced EMT and migration was investigated in human lung cancer A549 cells. TGF‑β induced EMT in A549 cells and increased their migratory ability, which were markedly suppressed by bufalin. Additionally, TGF‑β‑induced upregulation of Twist2 and zinc finger E‑box binding homeobox 2 (ZEB2), as well as the phosphorylation of Smad2 and Smad3 were also inhibited by bufalin. However, the Smad‑independent signaling pathways were not affected. Further analysis showed that the TGF‑β receptor I (TβRI) and TGF‑β receptor II (TβRII) were downregulated in the presence of bufalin. Pretreatment with SB431542, a potent inhibitor of the phosphorylation of TβRI, significantly attenuated TGF‑β‑induced EMT, mimicking the effect of bufalin on A549 cells. Taken together, these results suggest that bufalin suppresses TGF-β-induced EMT and migration by downregulating TβRI and TβRII in A549 cells.


Cholesterol content in cell membrane maintains surface levels of ErbB2 and confers a therapeutic vulnerability in ErbB2-positive breast cancer.

  • Jinrui Zhang‎ et al.
  • Cell communication and signaling : CCS‎
  • 2019‎

ErbB2 overexpression identifies a subset of breast cancer as ErbB2-positive and is frequently associated with poor clinical outcomes. As a membrane-embedded receptor tyrosine kinase, cell surface levels of ErbB2 are regulated dynamically by membrane physical properties. The present study aims to investigate the influence of membrane cholesterol contents on ErbB2 status and cellular responses to its tyrosine kinase inhibitors.


MiR-940 promotes the proliferation and migration of gastric cancer cells through up-regulation of programmed death ligand-1 expression.

  • Yibo Fan‎ et al.
  • Experimental cell research‎
  • 2018‎

Although anti-programmed death ligand-1 (PD-L1) therapy has shown light in treatment of gastric cancer, only a limited number of patients respond to the treatment. In addition to its immunosuppressive effect, PD-L1 is involved in other functions of tumor cells. Previously study showed that PD-L1 promoted EMT in lung cancer cells. However, the other effect and role of PD-L1 in gastric cancer remains unclear. In the present study, we first demonstrated that PD-L1 promoted the proliferation and migration in gastric cancer cell lines. We found that another STAT family member, STAT5a, is involved in regulating the expression of PD-L1 in gastric cancer. Additionally, Cbl-b interacted and ubiquitated STAT5a, down-regulated the expression of STAT5a and PD-L1. Moreover, bioinformatics predictions and experimental data showed that Cbl-b is a target gene of the microRNA miR-940. We further found that miR-940 promoted the proliferation and migration of gastric cancer in vivo and in vitro. Taken together, our findings suggest that miR-940/Cbl-b/STAT5a axis regulated the expression of PD-L1, which promotes the proliferation and migration of gastric cancer cells.


Applying Supercritical Fluid Technology to Prepare Ibuprofen Solid Dispersions with Improved Oral Bioavailability.

  • Fei Han‎ et al.
  • Pharmaceutics‎
  • 2019‎

In this study, supercritical fluid (SCF) technology was applied to prepare reliable solid dispersions of pharmaceutical compounds with limited bioavailability using ibuprofen (IBU) as a model compound. Solid-state characterization of the dispersions was conducted by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM). The PXRD and DSC results suggested that the amorphous form of IBU was maintained in the solid dispersions. Furthermore, in vitro dissolution and in vivo pharmacokinetic (PK) studies in rats were also performed. The dissolution performance of the SCF-prepared IBU dispersions was significantly improved compared to that of the physical mixtures of crystalline IBU and a polymer. In addition, the PK results revealed that the SCF-prepared IBU dispersions produced remarkably high blood drug concentrations (both the AUC and Cmax) and a rapid absorption rate (Tmax). Finally, molecular modeling was used to evaluate the binding energy of interactions between IBU and the polymers. The negative binding energy suggests a relatively stable system. Hence, SCF technology can be used as a very effective approach to prepare IBU solid dispersions with good physical stability and enhanced in vitro and in vivo performance.


A phase 1 dose escalation and expansion study of Tarextumab (OMP-59R5) in patients with solid tumors.

  • David C Smith‎ et al.
  • Investigational new drugs‎
  • 2019‎

Purpose This Phase I trial evaluated the maximum tolerated dose, safety, pharmacokinetics, pharmacodynamics and preliminary efficacy of tarextumab (OMP-5948), a novel cross-reactive antibody which binds and selectively inhibits signaling via both Notch2 and Notch3, in adult patients with advanced malignancies. Methods Standard 3 + 3 design with tarextumab 0.5, 1, 2.5, or 5 mg/kg weekly, or 5, 7.5, or 10 mg/kg every other week, or 7.5 mg every 3 weeks. Dose-limiting toxicities (DLT) were assessed during the first 28 days. Results Forty-two patients received tarextumab (21 weekly, 15 every other week, 6 every three weeks). 2/6 subjects at the 5 mg/kg weekly dose, 2/3 at 10 mg/kg every other week, and 0/6 at 7.5 mg/kg every three weeks had a DLT. The maximum tolerated dose (MTD) was 2.5 mg/kg weekly, and 7.5 mg/kg on the every other and every three week schedules. Gastrointestinal (GI) toxicity was the most common adverse event with diarrhea (81%), fatigue (48%), nausea (45%), anorexia (38%), and vomiting (38%) and abdominal pain and constipation (24% each). Biomarker analysis showed regulation of stem cell and Notch gene signaling. Conclusion Tarextumab was generally well-tolerated at doses <2.5 mg weekly and 7.5 mg/kg every other and every third week. Diarrhea was dose-limiting above these levels, but relatively easily managed at lower doses. Inhibition of Notch pathway signaling was demonstrated at these doses. ClinicalTrials.gov Identifier: NCT01277146.


Childhood retinol-binding protein 4 (RBP4) levels predicting the 10-year risk of insulin resistance and metabolic syndrome: the BCAMS study.

  • Ge Li‎ et al.
  • Cardiovascular diabetology‎
  • 2018‎

Elevated retinol-binding protein 4 (RBP4) levels may contribute to the development of metabolic abnormalities, but prospective studies evaluating the association between childhood RBP4 levels and metabolic syndrome (MS) in adulthood are lacking. We investigated whether RBP4 levels during childhood predict cardiometabolic risk at 10-year follow-up.


A novel function of hepatocyte growth factor in the activation of checkpoint kinase 1 phosphorylation in colon cancer cells.

  • Na Song‎ et al.
  • Molecular and cellular biochemistry‎
  • 2017‎

The ATR/checkpoint kinase 1 (Chk1) pathway plays an essential role in modulating the DNA damage response and homologous recombination. Particularly, Chk1 phosphorylation is related to cancer prognosis and therapeutic resistance. Some receptor tyrosine kinases participate in the regulation of Chk1 phosphorylation; however, the effect of hepatocyte growth factor (HGF) on Chk1 phosphorylation is unknown. In the present study, we demonstrated that HGF moderately activated Chk1 phosphorylation in colon cancer cells by upregulating TopBP1 and RAD51, and promoting TopBP1-ATR complex formation. Furthermore, AKT activity, which was promoted by HGF, served as an important mediator linking HGF/MET signaling and Chk1 phosphorylation. Depleting AKT activity attenuated basal expression of p-Chk1 and HGF-induced Chk1 activation. Moreover, AKT activity directly regulated TopBP1 and RAD51 expression. AKT inhibition suppressed HGF-induced upregulation of TopBP1 and RAD51, and enhanced TopBP1/ATR complex formation. Our results show that HGF was involved in regulating Chk1 phosphorylation, and further demonstrate that AKT activity was responsible for this HGF-induced Chk1 phosphorylation. These findings might potentially result in management of prognosis and therapeutic sensitivity in cancer therapy.


No association of TNF-α-308G/A polymorphisms with head and neck cancer risk: A PRISMA-compliant meta-analysis.

  • Cheng Yuan‎ et al.
  • Medicine‎
  • 2017‎

A number of studies had reported the association between tumor necrosis factor-alpha (TNF-α) gene polymorphisms and head and neck cancer (HNC) risk. However, the results remained controversial. Therefore, we performed a meta-analysis to derive a more precise evaluation of the association between TNF-α-308G/A polymorphism and overall HNC risk and evaluated influence of cancer types and ethnicities.


MicroRNA-145 protects follicular granulosa cells against oxidative stress-induced apoptosis by targeting Krüppel-like factor 4.

  • Lu Xu‎ et al.
  • Molecular and cellular endocrinology‎
  • 2017‎

Oxidative stress-induced follicular granulosa cell (GC) apoptosis plays an essential role in abnormal follicular atresia, which may trigger ovarian dysfunction. To investigate the role of microRNA (miR)-145 in the regulation of GC apoptosis and modulation of the apoptotic pathway in the setting of oxidative stress, we employed an H2O2-induced in vitro model and a 3-nitropropionic acid (NP)-induced in vivo model of ovarian oxidative stress. We demonstrated in vitro that miR-145 expression was significantly down-regulated in KGN cells and mouse granulosa cells (mGCs) treated with H2O2, whereas miR-145 over-expression attenuated H2O2-induced apoptosis in GCs. Moreover, miR-145 protected GCs against H2O2-induced apoptosis by targeting KLF4, which promoted H2O2-induced GC apoptosis via the BAX/BCL-2 pathway. Importantly, decreased miR-145 expression in the in vivo ovarian oxidative stress model promoted apoptosis by up-regulating KLF4 expression, whereas GC-specific miR-145 over-expression attenuated apoptosis by targeting KLF4. In conclusion, miR-145 protects GCs against oxidative stress-induced apoptosis by targeting KLF4.


RFX transcription factor DAF-19 regulates 5-HT and innate immune responses to pathogenic bacteria in Caenorhabditis elegans.

  • Yusu Xie‎ et al.
  • PLoS genetics‎
  • 2013‎

In Caenorhabditis elegans the Toll-interleukin receptor domain adaptor protein TIR-1 via a conserved mitogen-activated protein kinase (MAPK) signaling cascade induces innate immunity and upregulates serotonin (5-HT) biosynthesis gene tph-1 in a pair of ADF chemosensory neurons in response to infection. Here, we identify transcription factors downstream of the TIR-1 signaling pathway. We show that common transcription factors control the innate immunity and 5-HT biosynthesis. We demonstrate that a cysteine to tyrosine substitution in an ARM motif of the HEAT/Arm repeat region of the TIR-1 protein confers TIR-1 hyperactivation, leading to constitutive tph-1 upregulation in the ADF neurons, increased expression of intestinal antimicrobial genes, and enhanced resistance to killing by the human opportunistic pathogen Pseudomonas aeruginosa PA14. A forward genetic screen for suppressors of the hyperactive TIR-1 led to the identification of DAF-19, an ortholog of regulatory factor X (RFX) transcription factors that are required for human adaptive immunity. We show that DAF-19 concerts with ATF-7, a member of the activating transcription factor (ATF)/cAMP response element-binding B (CREB) family of transcription factors, to regulate tph-1 and antimicrobial genes, reminiscent of RFX-CREB interaction in human immune cells. daf-19 mutants display heightened susceptibility to killing by PA14. Remarkably, whereas the TIR-1-MAPK-DAF-19/ATF-7 pathway in the intestinal immunity is regulated by DKF-2/protein kinase D, we found that the regulation of tph-1 expression is independent of DKF-2 but requires UNC-43/Ca(2+)/calmodulin-dependent protein kinase (CaMK) II. Our results suggest that pathogenic cues trigger a common core-signaling pathway via tissue-specific mechanisms and demonstrate a novel role for RFX factors in neuronal and innate immune responses to infection.


Optically-controlled bacterial metabolite for cancer therapy.

  • Di-Wei Zheng‎ et al.
  • Nature communications‎
  • 2018‎

Bacteria preferentially accumulating in tumor microenvironments can be utilized as natural vehicles for tumor targeting. However, neither current chemical nor genetic approaches alone can fully satisfy the requirements on both stability and high efficiency. Here, we propose a strategy of "charging" bacteria with a nano-photocatalyst to strengthen their metabolic activities. Carbon nitride (C3N4) is combined with Escherichia coli (E. coli) carrying nitric oxide (NO) generation enzymes for photo-controlled bacterial metabolite therapy (PMT). Under light irradiation, photoelectrons produced by C3N4 can be transferred to E. coli to promote the enzymatic reduction of endogenous NO3- to cytotoxic NO with a 37-fold increase. In a mouse model, C3N4 loaded bacteria are perfectly accumulated throughout the tumor and the PMT treatment results in around 80% inhibition of tumor growth. Thus, synthetic materials-remodeled microorganism may be used to regulate focal microenvironments and increase therapeutic efficiency.


Shikonin reduces tamoxifen resistance through long non-coding RNA uc.57.

  • Chen-Han Zhang‎ et al.
  • Oncotarget‎
  • 2017‎

Tamoxifen resistance is a serious problem in the endocrine therapy of breast cancer. Long non-coding RNAs play important roles in tumor development. In this study, we revealed the involvement of lncRNA uc.57 and its downstream gene BCL11A in TAM resistance. Tamoxifen-resistant MCF-7R cells showed lower expression of uc.57 and higher expression of BCL11A mRNA and protein than the parental MCF-7 cells. Moreover, levels of uc.57 mRNA were lower and BCL11A mRNA were higher in breast cancer tissues than in precancerous breast tissues. Shikonin treatment reduced tamoxifen resistance in MCF-7R cells both in vitro and in vivo, targeting uc.57/BCL11A. Fluorescence in situ hybridization and RNA immunoprecipitation analyses showed that uc.57 binds to BCL11A. Uc.57 overexpression downregulated BCL11A and reduced tamoxifen resistance in MCF-7R cells both in vitro and in vivo. BCL11A knockdown also reduced tamoxifen resistance by inhibiting PI3K/AKT and MAPK signaling pathways. It thus appears shikonin reduces tamoxifen resistance of MCF-7R breast cancer cells by inducing uc.57, which downregulates BCL11A to inhibit PI3K/AKT and MAPK signaling pathways.


Umbilical cord-derived mesenchymal stem cells on scaffolds facilitate collagen degradation via upregulation of MMP-9 in rat uterine scars.

  • Lu Xu‎ et al.
  • Stem cell research & therapy‎
  • 2017‎

Severe injuries of the uterus may trigger uterine scar formation, ultimately leading to infertility or obstetrical complications. To date, few methods have adequately solved the problem of collagen deposition in uterine scars. Umbilical cord-derived mesenchymal stem cells (UC-MSCs) have shown great promise in clinical applications. The objective of this study was to investigate the effect of a scaffold/UC-MSCs construct on collagen degradation and functional regeneration in rat uterine scars following full-thickness excision of uterine walls.


Discovery of microRNAs during early spermatogenesis in chicken.

  • Lu Xu‎ et al.
  • PloS one‎
  • 2017‎

Spermatogenesis is a complex process that involves many elements. However, until now, little is known at the molecular level about spermatogenesis in poultry. Here we investigated microRNAs and their target genes that may be involved in germ cell development and spermatogonial in chicken. We used next-generation sequencing to analyze miRNA expression profiles in three types of germline cells: primordial germ cells (PGCs), spermatogonial stem cells (SSCs), and spermatogonia (Sp) during early stage of spermatogenesis. After validated the candidate miRNAs and corresponding genes' expression in three types of cells, we found 15 miRNAs that were enriched 21 target genes that may be involved in spermatogenesis. Among the enriched miRNAs, miR-202-5p/3p were up-regulated in the Sp library and down-regulated in the PGCs library. Through RT-qPCR and Dual-Luciferase reporter assay, we confirmed that miR-202-5p bind to LIMK2 and involved in germ cell development. Collectively, we firstly discover the novel miRNAs, like miR-202-5p, and its related genes and pathways, expressed during the early spermatogonial stage in chicken, which will provide new clues for deciphering the molecular mechanism of the miRNAs regulating germline stem cell differentiation and spermatogenesis in chicken.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: