Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 61 papers

Exemplary multiplex bisulfite amplicon data used to demonstrate the utility of Methpat.

  • Nicholas C Wong‎ et al.
  • GigaScience‎
  • 2015‎

DNA methylation is a complex epigenetic marker that can be analyzed using a wide variety of methods. Interpretation and visualization of DNA methylation data can mask complexity in terms of methylation status at each CpG site, cellular heterogeneity of samples and allelic DNA methylation patterns within a given DNA strand. Bisulfite sequencing is considered the gold standard, but visualization of massively parallel sequencing results remains a significant challenge.


Genome-scale methylation assessment did not identify prognostic biomarkers in oral tongue carcinomas.

  • Annette M Lim‎ et al.
  • Clinical epigenetics‎
  • 2016‎

DNA methylation profiling of heterogeneous head and neck squamous cell carcinoma (HNSCC) cohorts has been reported to predict patient outcome. We investigated if a prognostic DNA methylation profile could be found in tumour tissue from a single uniform subsite, the oral tongue. The methylation status of 109 comprehensively annotated oral tongue squamous cell carcinoma (OTSCC) formalin-fixed paraffin-embedded (FFPE) samples from a single institution were examined with the Illumina HumanMethylation450K (HM450K) array. Data pre-processing, quality control and analysis were performed using R packages. Probes mapping to SNPs, sex chromosomes and unreliable probes were accounted for prior to downstream analyses. The relationship between methylation and patient survival was examined using both agnostic approaches and feature selection. The cohort was enlarged by incorporation of 331 The Cancer Genome Atlas (TCGA) HNSCC samples, which included 91 TCGA OTSCC samples with HM450K and survival data available.


Clustered somatic mutations are frequent in transcription factor binding motifs within proximal promoter regions in melanoma and other cutaneous malignancies.

  • Andrew J Colebatch‎ et al.
  • Oncotarget‎
  • 2016‎

Most cancer DNA sequencing studies have prioritized recurrent non-synonymous coding mutations in order to identify novel cancer-related mutations. Although attention is increasingly being paid to mutations in non-coding regions, standard approaches to identifying significant mutations may not be appropriate and there has been limited analysis of mutational clusters in functionally annotated non-coding regions. We sought to identify clustered somatic mutations (hotspot regions across samples) in functionally annotated regions in melanoma and other cutaneous malignancies (cutaneous squamous cell carcinoma, basal cell carcinoma and Merkel cell carcinoma). Sliding window analyses revealed numerous recurrent clustered hotspot mutations in proximal promoters, with some specific clusters present in up to 25% of cases. Mutations in melanoma were clustered within ETS and Sp1 transcription factor binding motifs, had a UV signature and were identified in other cutaneous malignancies. Clinicopathologic correlation and mutation analysis support a causal role for chronic UV irradiation generating somatic mutations in transcription factor binding motifs of proximal promoters.


Whole exome sequencing identifies a recurrent RQCD1 P131L mutation in cutaneous melanoma.

  • Stephen Q Wong‎ et al.
  • Oncotarget‎
  • 2015‎

Melanoma is often caused by mutations due to exposure to ultraviolet radiation. This study reports a recurrent somatic C > T change causing a P131L mutation in the RQCD1 (Required for Cell Differentiation1 Homolog) gene identified through whole exome sequencing of 20 metastatic melanomas. Screening in 715 additional primary melanomas revealed a prevalence of ~4%. This represents the first reported recurrent mutation in a member of the CCR4-NOT complex in cancer. Compared to tumors without the mutation, the P131L mutant positive tumors were associated with increased thickness (p = 0.02), head and neck (p = 0.009) and upper limb (p = 0.03) location, lentigo maligna melanoma subtype (p = 0.02) and BRAF V600K (p = 0.04) but not V600E or NRAS codon 61 mutations. There was no association with nodal disease (p = 0.3). Mutually exclusive mutations of other members of the CCR4-NOT complex were found in ~20% of the TCGA melanoma dataset suggesting the complex may play an important role in melanoma biology. Mutant RQCD1 was predicted to bind strongly to HLA-A0201 and HLA-Cw3 MHC1 complexes. From thirteen patients with mutant RQCD1, an anti-tumor CD8⁺ T cell response was observed from a single patient's peripheral blood mononuclear cell population stimulated with mutated peptide compared to wildtype indicating a neoantigen may be formed.


Methylation of all BRCA1 copies predicts response to the PARP inhibitor rucaparib in ovarian carcinoma.

  • Olga Kondrashova‎ et al.
  • Nature communications‎
  • 2018‎

Accurately identifying patients with high-grade serous ovarian carcinoma (HGSOC) who respond to poly(ADP-ribose) polymerase inhibitor (PARPi) therapy is of great clinical importance. Here we show that quantitative BRCA1 methylation analysis provides new insight into PARPi response in preclinical models and ovarian cancer patients. The response of 12 HGSOC patient-derived xenografts (PDX) to the PARPi rucaparib was assessed, with variable dose-dependent responses observed in chemo-naive BRCA1/2-mutated PDX, and no responses in PDX lacking DNA repair pathway defects. Among BRCA1-methylated PDX, silencing of all BRCA1 copies predicts rucaparib response, whilst heterozygous methylation is associated with resistance. Analysis of 21 BRCA1-methylated platinum-sensitive recurrent HGSOC (ARIEL2 Part 1 trial) confirmed that homozygous or hemizygous BRCA1 methylation predicts rucaparib clinical response, and that methylation loss can occur after exposure to chemotherapy. Accordingly, quantitative BRCA1 methylation analysis in a pre-treatment biopsy could allow identification of patients most likely to benefit, and facilitate tailoring of PARPi therapy.


A reference collection of patient-derived cell line and xenograft models of proneural, classical and mesenchymal glioblastoma.

  • Brett W Stringer‎ et al.
  • Scientific reports‎
  • 2019‎

Low-passage, serum-free cell lines cultured from patient tumour tissue are the gold-standard for preclinical studies and cellular investigations of glioblastoma (GBM) biology, yet entrenched, poorly-representative cell line models are still widely used, compromising the significance of much GBM research. We submit that greater adoption of these critical resources will be promoted by the provision of a suitably-sized, meaningfully-described reference collection along with appropriate tools for working with them. Consequently, we present a curated panel of 12 readily-usable, genetically-diverse, tumourigenic, patient-derived, low-passage, serum-free cell lines representing the spectrum of molecular subtypes of IDH-wildtype GBM along with their detailed phenotypic characterisation plus a bespoke set of lentiviral plasmids for bioluminescent/fluorescent labelling, gene expression and CRISPR/Cas9-mediated gene inactivation. The cell lines and all accompanying data are readily-accessible via a single website, Q-Cell (qimrberghofer.edu.au/q-cell/) and all plasmids are available from Addgene. These resources should prove valuable to investigators seeking readily-usable, well-characterised, clinically-relevant, gold-standard models of GBM.


DNA Methylation Profiling of Breast Cancer Cell Lines along the Epithelial Mesenchymal Spectrum-Implications for the Choice of Circulating Tumour DNA Methylation Markers.

  • Anh Viet-Phuong Le‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

(1) Background: Epithelial⁻mesenchymal plasticity (EMP) is a dynamic process whereby epithelial carcinoma cells reversibly acquire morphological and invasive characteristics typical of mesenchymal cells. Identifying the methylation differences between epithelial and mesenchymal states may assist in the identification of optimal DNA methylation biomarkers for the blood-based monitoring of cancer. (2) Methods: Methylation-sensitive high-resolution melting (MS-HRM) was used to examine the promoter methylation status of a panel of established and novel markers in a range of breast cancer cell lines spanning the epithelial⁻mesenchymal spectrum. Pyrosequencing was used to validate the MS-HRM results. (3) Results: VIM, DKK3, and CRABP1 were methylated in the majority of epithelial breast cancer cell lines, while methylation of GRHL2, MIR200C, and CDH1 was restricted to mesenchymal cell lines. Some markers that have been used to assess minimal residual disease such as AKR1B1 and APC methylation proved to be specific for epithelial breast cell lines. However, RASSF1A, RARβ, TWIST1, and SFRP2 methylation was seen in both epithelial and mesenchymal cell lines, supporting their suitability for a multimarker panel. (4) Conclusions: Profiling DNA methylation shows a distinction between epithelial and mesenchymal phenotypes. Understanding how DNA methylation varies between epithelial and mesenchymal phenotypes may lead to more rational selection of methylation-based biomarkers for circulating tumour DNA analysis.


GRIDSS: sensitive and specific genomic rearrangement detection using positional de Bruijn graph assembly.

  • Daniel L Cameron‎ et al.
  • Genome research‎
  • 2017‎

The identification of genomic rearrangements with high sensitivity and specificity using massively parallel sequencing remains a major challenge, particularly in precision medicine and cancer research. Here, we describe a new method for detecting rearrangements, GRIDSS (Genome Rearrangement IDentification Software Suite). GRIDSS is a multithreaded structural variant (SV) caller that performs efficient genome-wide break-end assembly prior to variant calling using a novel positional de Bruijn graph-based assembler. By combining assembly, split read, and read pair evidence using a probabilistic scoring, GRIDSS achieves high sensitivity and specificity on simulated, cell line, and patient tumor data, recently winning SV subchallenge #5 of the ICGC-TCGA DREAM8.5 Somatic Mutation Calling Challenge. On human cell line data, GRIDSS halves the false discovery rate compared to other recent methods while matching or exceeding their sensitivity. GRIDSS identifies nontemplate sequence insertions, microhomologies, and large imperfect homologies, estimates a quality score for each breakpoint, stratifies calls into high or low confidence, and supports multisample analysis.


Quantitative threefold allele-specific PCR (QuanTAS-PCR) for highly sensitive JAK2 V617F mutant allele detection.

  • Giada V Zapparoli‎ et al.
  • BMC cancer‎
  • 2013‎

The JAK2 V617F mutation is the most frequent somatic change in myeloproliferative neoplasms, making it an important tumour-specific marker for diagnostic purposes and for the detection of minimal residual disease. Sensitive quantitative assays are required for both applications, particularly for the monitoring of minimal residual disease, which requires not only high sensitivity but also very high specificity.


PIK3CA mutations are frequently observed in BRCAX but not BRCA2-associated male breast cancer.

  • Siddhartha Deb‎ et al.
  • Breast cancer research : BCR‎
  • 2013‎

Although a substantial proportion of male breast cancers (MBCs) are hereditary, the molecular pathways that are activated are unknown. We therefore examined the frequency and clinicopathological associations of the PIK3CA/mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK) pathways and their regulatory genes in familial MBC.


Empirical array quality weights in the analysis of microarray data.

  • Matthew E Ritchie‎ et al.
  • BMC bioinformatics‎
  • 2006‎

Assessment of array quality is an essential step in the analysis of data from microarray experiments. Once detected, less reliable arrays are typically excluded or "filtered" from further analysis to avoid misleading results.


Limited copy number-high resolution melting (LCN-HRM) enables the detection and identification by sequencing of low level mutations in cancer biopsies.

  • Hongdo Do‎ et al.
  • Molecular cancer‎
  • 2009‎

Mutation detection in clinical tumour samples is challenging when the proportion of tumour cells, and thus mutant alleles, is low. The limited sensitivity of conventional sequencing necessitates the adoption of more sensitive approaches. High resolution melting (HRM) is more sensitive than sequencing but identification of the mutation is desirable, particularly when it is important to discriminate false positives due to PCR errors or template degradation from true mutations.We thus developed limited copy number - high resolution melting (LCN-HRM) which applies limiting dilution to HRM. Multiple replicate reactions with a limited number of target sequences per reaction allow low level mutations to be detected. The dilutions used (based on Ct values) are chosen such that mutations, if present, can be detected by the direct sequencing of amplicons with aberrant melting patterns.


Validation of a primer optimisation matrix to improve the performance of reverse transcription - quantitative real-time PCR assays.

  • Thomas Mikeska‎ et al.
  • BMC research notes‎
  • 2009‎

The development of reverse transcription - quantitative real-time PCR (RT-qPCR) platforms that can simultaneously measure the expression of multiple genes is dependent on robust assays that function under identical thermal cycling conditions. The use of a primer optimisation matrix to improve the performance of RT-qPCR assays is often recommended in technical bulletins and manuals. Despite this recommendation, a comprehensive introduction to and evaluation of this approach has been absent from the literature. Therefore, we investigated the impact of varying the primer concentration, leaving all the other reaction conditions unchanged, on a large number of RT-qPCR assays which in this case were designed to be monitored using hydrolysis probes from the Universal Probe Library (UPL) library.


Reactivating latent HIV with PKC agonists induces resistance to apoptosis and is associated with phosphorylation and activation of BCL2.

  • Andrea J French‎ et al.
  • PLoS pathogens‎
  • 2020‎

Eradication of HIV-1 by the "kick and kill" strategy requires reactivation of latent virus to cause death of infected cells by either HIV-induced or immune-mediated apoptosis. To date this strategy has been unsuccessful, possibly due to insufficient cell death in reactivated cells to effectively reduce HIV-1 reservoir size. As a possible cause for this cell death resistance, we examined whether leading latency reversal agents (LRAs) affected apoptosis sensitivity of CD4 T cells. Multiple LRAs of different classes inhibited apoptosis in CD4 T cells. Protein kinase C (PKC) agonists bryostatin-1 and prostratin induced phosphorylation and enhanced neutralizing capability of the anti-apoptotic protein BCL2 in a PKC-dependent manner, leading to resistance to apoptosis induced by both intrinsic and extrinsic death stimuli. Furthermore, HIV-1 producing CD4 T cells expressed more BCL2 than uninfected cells, both in vivo and after ex vivo reactivation. Therefore, activation of BCL2 likely contributes to HIV-1 persistence after latency reversal with PKC agonists. The effects of LRAs on apoptosis sensitivity should be considered in designing HIV cure strategies predicated upon the "kick and kill" paradigm.


BRCA1 secondary splice-site mutations drive exon-skipping and PARP inhibitor resistance.

  • Ksenija Nesic‎ et al.
  • medRxiv : the preprint server for health sciences‎
  • 2023‎

BRCA1 splice isoforms Δ11 and Δ11q can contribute to PARP inhibitor (PARPi) resistance by splicing-out the mutation-containing exon, producing truncated, partially-functional proteins. However, the clinical impact and underlying drivers of BRCA1 exon skipping remain undetermined. We analyzed nine ovarian and breast cancer patient derived xenografts (PDX) with BRCA1 exon 11 frameshift mutations for exon skipping and therapy response, including a matched PDX pair derived from a patient pre- and post-chemotherapy/PARPi. BRCA1 exon 11 skipping was elevated in PARPi resistant PDX tumors. Two independent PDX models acquired secondary BRCA1 splice site mutations (SSMs), predicted in silico to drive exon skipping. Predictions were confirmed using qRT-PCR, RNA sequencing, western blots and BRCA1 minigene modelling. SSMs were also enriched in post-PARPi ovarian cancer patient cohorts from the ARIEL2 and ARIEL4 clinical trials. We demonstrate that SSMs drive BRCA1 exon 11 skipping and PARPi resistance, and should be clinically monitored, along with frame-restoring secondary mutations.


The expression of the ubiquitin ligase SIAH2 (seven in absentia homolog 2) is mediated through gene copy number in breast cancer and is associated with a basal-like phenotype and p53 expression.

  • Peter Chan‎ et al.
  • Breast cancer research : BCR‎
  • 2011‎

The seven in absentia homolog 2 (SIAH2) protein plays a significant role in the hypoxic response by regulating the abundance of hypoxia-inducible factor-α; however, its role in breast carcinoma is unclear. We investigated the frequency and expression pattern of SIAH2 in two independent cohorts of sporadic breast cancers.


Targeted-capture massively-parallel sequencing enables robust detection of clinically informative mutations from formalin-fixed tumours.

  • Stephen Q Wong‎ et al.
  • Scientific reports‎
  • 2013‎

Massively parallel sequencing offers the ability to interrogate a tumour biopsy for multiple mutational changes. For clinical samples, methodologies must enable maximal extraction of available sequence information from formalin-fixed and paraffin-embedded (FFPE) material. We assessed the use of targeted capture for mutation detection in FFPE DNA. The capture probes targeted the coding region of all known kinase genes and selected oncogenes and tumour suppressor genes. Seven melanoma cell lines and matching FFPE xenograft DNAs were sequenced. An informatics pipeline was developed to identify variants and contaminating mouse reads. Concordance of 100% was observed between unfixed and formalin-fixed for reported COSMIC variants including BRAF V600E. mutations in genes not conventionally screened including ERBB4, ATM, STK11 and CDKN2A were readily detected. All regions were adequately covered with independent reads regardless of GC content. This study indicates that hybridisation capture is a robust approach for massively parallel sequencing of FFPE samples.


Immunodetection of human topoisomerase I-DNA covalent complexes.

  • Anand G Patel‎ et al.
  • Nucleic acids research‎
  • 2016‎

A number of established and investigational anticancer drugs slow the religation step of DNA topoisomerase I (topo I). These agents induce cytotoxicity by stabilizing topo I-DNA covalent complexes, which in turn interact with advancing replication forks or transcription complexes to generate lethal lesions. Despite the importance of topo I-DNA covalent complexes, it has been difficult to detect these lesions within intact cells and tumors. Here, we report development of a monoclonal antibody that specifically recognizes covalent topo I-DNA complexes, but not free topo I or DNA, by immunoblotting, immunofluorescence or flow cytometry. Utilizing this antibody, we demonstrate readily detectable topo I-DNA covalent complexes after treatment with camptothecins, indenoisoquinolines and cisplatin but not nucleoside analogues. Topotecan-induced topo I-DNA complexes peak at 15-30 min after drug addition and then decrease, whereas indotecan-induced complexes persist for at least 4 h. Interestingly, simultaneous staining for covalent topo I-DNA complexes, phospho-H2AX and Rad51 suggests that topotecan-induced DNA double-strand breaks occur at sites distinct from stabilized topo I-DNA covalent complexes. These studies not only provide new insight into the action of topo I-directed agents, but also illustrate a strategy that can be applied to study additional topoisomerases and their inhibitors in vitro and in vivo.


Role of p53 in the progression of gastric cancer.

  • Rita A Busuttil‎ et al.
  • Oncotarget‎
  • 2014‎

Intestinal metaplasia (IM) is a premalignant lesion associated with gastric cancer (GC) but is poorly described in terms of molecular changes. Here, we explored the role of TP53, a commonly mutated gene in GC, to determine if p53 protein expression and/or the presence of somatic mutations in TP53 can be used as a predictive marker for patients at risk of progressing to GC from IM. Immunohistochemistry and high resolution melting were used to determine p53 protein expression and TP53 mutation status respectively in normal gastric mucosa, IM without concurrent GC (IM-GC), IM with concurrent GC (IM+GC) and GC. This comparative study revealed an incremental increase in p53 expression levels with progression of disease from normal mucosa, via an IM intermediate to GC. TP53 mutations however, were not detected in IM but occurred frequently in GC. Further, we identified increased protein expression of Mdm2/x, both powerful regulators of p53, in 100% of the IM+GC cohort with these samples also exhibiting high levels of wild-type p53 protein. Our data suggests that TP53 mutations occur late in gastric carcinogenesis contributing to the final transition to cancer. We also demonstrated involvement of Mdmx in GC.


BRCA2 carriers with male breast cancer show elevated tumour methylation.

  • Siddhartha Deb‎ et al.
  • BMC cancer‎
  • 2017‎

Male breast cancer (MBC) represents a poorly characterised group of tumours, the management of which is largely based on practices established for female breast cancer. However, recent studies demonstrate biological and molecular differences likely to impact on tumour behaviour and therefore patient outcome. The aim of this study was to investigate methylation of a panel of commonly methylated breast cancer genes in familial MBCs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: