2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 63 papers

Serum Response Factor Is Essential for Prenatal Gastrointestinal Smooth Muscle Development and Maintenance of Differentiated Phenotype.

  • Chanjae Park‎ et al.
  • Journal of neurogastroenterology and motility‎
  • 2015‎

Smooth muscle cells (SMCs) characteristically express serum response factor (SRF), which regulates their development. The role of SRF in SMC plasticity in the pathophysiological conditions of gastrointestinal (GI) tract is less characterized.


Regulation of gastric electrical and mechanical activity by cholinesterases in mice.

  • Amy A Worth‎ et al.
  • Journal of neurogastroenterology and motility‎
  • 2015‎

Gastric peristalsis begins in the orad corpus and propagates to the pylorus. Directionality of peristalsis depends upon orderly generation and propagation of electrical slow waves and a frequency gradient between proximal and distal pacemakers. We sought to understand how chronotropic agonists affect coupling between corpus and antrum.


Temporal sequence of activation of cells involved in purinergic neurotransmission in the colon.

  • Salah A Baker‎ et al.
  • The Journal of physiology‎
  • 2015‎

Platelet derived growth factor receptor α (PDGFRα(+) ) cells in colonic muscles are innervated by enteric inhibitory motor neurons. PDGFRα(+) cells generate Ca(2+) transients in response to exogenous purines and these responses were blocked by MRS-2500. Stimulation of enteric neurons, with cholinergic and nitrergic components blocked, evoked Ca(2+) transients in PDGFRα(+) and smooth muscle cells (SMCs). Responses to nerve stimulation were abolished by MRS-2500 and not observed in muscles with genetic deactivation of P2Y1 receptors. Ca(2+) transients evoked by nerve stimulation in PDGFRα(+) cells showed the same temporal characteristics as electrophysiological responses. PDGFRα(+) cells express gap junction genes, and drugs that inhibit gap junctions blocked neural responses in SMCs, but not in nerve processes or PDGFRα(+) cells. PDGFRα(+) cells are directly innervated by inhibitory motor neurons and purinergic responses are conducted to SMCs via gap junctions.


Functional expression of SK channels in murine detrusor PDGFR+ cells.

  • Haeyeong Lee‎ et al.
  • The Journal of physiology‎
  • 2013‎

We sought to characterize molecular expression and ionic conductances in a novel population of interstitial cells (PDGFRα(+) cells) in murine bladder to determine how these cells might participate in regulation of detrusor excitability. PDGFRα(+) cells and smooth muscle cells (SMCs) were isolated from detrusor muscles of PDGFRα(+)/eGFP and smMHC/Cre/eGFP mice and sorted by FACS. PDGFRα(+) cells were highly enriched in Pdgfra (12 fold vs. unsorted cell) and minimally positive for Mhc (SMC marker), Kit (ICC marker) and Pgp9.5 (neuronal marker). SK3 was dominantly expressed in PDGFRα(+) cells in comparison to SMCs. αSlo (BK marker) was more highly expressed in SMCs. SK3 protein was observed in PDGFRα(+) cells by immunohistochemistry but could not be resolved in SMCs. Depolarization evoked voltage-dependent Ca(2+) currents in SMCs, but inward current conductances were not activated in PDGFRα(+) cells under the same conditions. PDGFRα(+) cells displayed spontaneous transient outward currents (STOCs) at potentials positive to -60 mV that were inhibited by apamin. SK channel modulators, CyPPA and SKA-31, induced significant hyperpolarization of PDGFRα(+) cells and activated SK currents under voltage clamp. Similar responses were not resolved in SMCs at physiological potentials. Single channel measurements confirmed the presence of functional SK3 channels (i.e. single channel conductance of 10 pS and sensitivity to intracellular Ca(2+)) in PDGFRα(+) cells. The apamin-sensitive stabilizing factor regulating detrusor excitability is likely to be due to the expression of SK3 channels in PDGFRα(+) cells because SK agonists failed to elicit resolvable currents and hyperpolarization in SMCs at physiological potentials.


Responses to enteric motor neurons in the gastric fundus of mice with reduced intramuscular interstitial cells of cajal.

  • Kenton M Sanders‎ et al.
  • Journal of neurogastroenterology and motility‎
  • 2014‎

Interstitial cells of Cajal (ICC) play important functions in motor activity of the gastrointestinal tract. The role of ICC as pace-makers is well established, however their participation in neurotransmission is controversial. Studies using mutant animals that lack ICC have yielded variable conclusions on their importance in enteric motor responses. The purpose of this study was to: (1) clarify the role of intramuscular ICC (ICC-IM) in gastric motor-neurotransmission and (2) evaluate remodeling of enteric mo-tor responses in W/W(V) mice.


P2Y1 purinoreceptors are fundamental to inhibitory motor control of murine colonic excitability and transit.

  • Sung Jin Hwang‎ et al.
  • The Journal of physiology‎
  • 2012‎

Activation of enteric inhibitory motor neurons causes inhibitory junctional potentials (IJPs) and muscle relaxation in mammalian gastrointestinal (GI) muscles, including humans. IJPs in many GI muscles are bi-phasic with a fast initial hyperpolarization (fIJP) due to release of a purine neurotransmitter and a slower hyperpolarization component (sIJP) due to release of nitric oxide. We sought to characterize the nature of the post-junctional receptor(s) involved in transducing purinergic neural inputs in the murine colon using mice with genetically deactivated P2ry1. Wild-type mice had characteristic biphasic IJPs and pharmacological dissection confirmed that the fIJP was purinergic and the sIJP was nitrergic. The fIJP was completely absent in P2ry1(−/−) mice and the P2Y1 receptor antagonist MRS2500 had no effect on electrical activity or responses to electrical field stimulation of intrinsic nerves in these mice. Contractile experiments confirmed that purinergic responses were abolished in P2ry1(−/−) mice. Picospritzing of neurotransmitter candidates (ATP and its primary metabolite, ADP) and β-NAD (and its primary metabolite, ADP-ribose, ADPR) caused transient hyperpolarization responses in wild-type colons, but responses to β-NAD and ADPR were completely abolished in P2ry1(−/−) mice. Hyperpolarization and relaxation responses to ATP and ADP were retained in colons of P2ry1(−/−) mice. Video imaging revealed that transit of fecal pellets was significantly delayed in colons from P2ry1(−/−) mice. These data demonstrate the importance of purinergic neurotransmission in regulating colonic motility and confirm pharmacological experiments suggesting that purinergic neurotransmission is mediated via P2Y1 receptors.


Platelet-derived growth factor receptor α-positive cells in the tunica muscularis of human colon.

  • Masaaki Kurahashi‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2012‎

An obstacle to understanding motor pathologies of the gastrointestinal (GI) tract is that the physiology of some of the cellular components of the gut wall is not understood. Morphologists identified fibroblast-like cells in the tunica muscularis many years ago, but little is known about these interstitial cells because of inadequate techniques to identify these cells. Recent findings have shown that fibroblast-like cells express platelet-derived growth factor receptor α (PDGFRα) in mice and that antibodies for these receptors can be used to label the cells. We used immunohistochemical techniques to study the phenotype and intercellular relationships of fibroblast-like cells in the human colon. Fibroblast-like cells are labelled specifically with antibodies to PDGFRα and widely distributed through the tunica muscularis of human colon. These cells form discrete networks in the region of the myenteric plexus and within the circular and longitudinal muscle layers. Platelet-derived growth factor receptor α(+) cells are distinct from c-Kit(+) interstitial cells of Cajal and closely associated with varicose processes of neurons expressing substance P (excitatory motor neurons) or neuronal nitric oxide synthase (nNOS) (inhibitory motor neurons). Platelet-derived growth factor receptor α(+) cells express small conductance Ca(2+)-activated K(+) channels (SK3), which are likely to mediate purinergic neural regulation of colonic muscles. Our data suggest that PDGFRα(+) cells may have an important role in transducing inputs from enteric motor neurons. This study identifies reagents and techniques that will allow investigation of this class of interstitial cells and help develop an understanding of the role of PDGFRα(+) cells in the human GI tract in health and disease.


A functional role for the 'fibroblast-like cells' in gastrointestinal smooth muscles.

  • Masaaki Kurahashi‎ et al.
  • The Journal of physiology‎
  • 2011‎

Smooth muscles, as in the gastrointestinal tract, are composed of several types of cells. Gastrointestinal muscles contain smooth muscle cells, enteric neurons, glial cells, immune cells, and various classes of interstitial cells. One type of interstitial cell, referred to as 'fibroblast-like cells' by morphologists, are common, but their function is unknown. These cells are found near the terminals of enteric motor neurons, suggesting they could have a role in generating neural responses that help control gastrointestinal movements. We used a novel mouse with bright green fluorescent protein expressed specifically in the fibroblast-like cells to help us identify these cells in the mixture of cells obtained when whole muscles are dispersed with enzymes. We isolated these cells and found they respond to a major class of inhibitory neurotransmitters - purines. We characterized these responses, and our results provide a new hypothesis about the role of fibroblast-like cells in smooth muscle tissues.


Expression of anoctamin 1/TMEM16A by interstitial cells of Cajal is fundamental for slow wave activity in gastrointestinal muscles.

  • Sung Jin Hwang‎ et al.
  • The Journal of physiology‎
  • 2009‎

Interstitial cells of Cajal (ICC) generate pacemaker activity (slow waves) in gastrointestinal (GI) smooth muscles, but the mechanism(s) of pacemaker activity are controversial. Several conductances, such as Ca(2+)-activated Cl() channels (CaCC) and non-selective cation channels (NSCC) have been suggested to be involved in slow wave depolarization. We investigated the expression and function of a new class of CaCC, anoctamin 1 (ANO1), encoded by Tmem16a, which was discovered to be highly expressed in ICC in a microarray screen. GI muscles express splice variants of the Tmem16a transcript in addition to other paralogues of the Tmem16a family. ANO1 protein is expressed abundantly and specifically in ICC in all regions of the murine, non-human primate (Macaca fascicularis) and human GI tracts. CaCC blocking drugs, niflumic acid and 4,4-diisothiocyano-2,2-stillbene-disulfonic acid (DIDS) reduced the frequency and blocked slow waves in murine, primate, human small intestine and stomach in a concentration-dependent manner. Unitary potentials, small stochastic membrane depolarizations thought to underlie slow waves, were insensitive to CaCC blockers. Slow waves failed to develop by birth in mice homozygous for a null allele of Tmem16a (Tmem16a(tm1Bdh)(/tm1Bdh)) and did not develop subsequent to birth in organ culture, as in wildtype and heterozygous muscles. Loss of function of ANO1 did not inhibit the development of ICC networks that appeared structurally normal as indicated by Kit antibodies. These data demonstrate the fundamental role of ANO1 in the generation of slow waves in GI ICC.


Molecular and functional characterization of inwardly rectifying K+ currents in murine proximal colon.

  • Xu Huang‎ et al.
  • The Journal of physiology‎
  • 2018‎

Interstitial cells of Cajal (ICC) from murine colonic muscles express genes encoding inwardly rectifying K+ channels. Transcripts of Kcnj2 (Kir2.1), Kcnj4 (Kir2.3), Kcnj14 (Kir2.4), Kcnj5 (Kir3.4), Kcnj8 (Kir 6.1) and Kcnj11 (Kir6.2) were found in colonic ICC. A conductance with properties consistent with Kir2 channels was observed in ICC but not in smooth muscle cells (SMC). Despite expression of gene transcripts, G-protein gated K+ channel (Kir3) and KATP (Kir6) currents were not resolved in ICC. KATP is a conductance prominent in SMC. Kir2 antagonist caused depolarization of freshly dispersed ICC and colonic smooth muscles, suggesting that this conductance is active under resting conditions in colonic muscles. The conclusion of the present study is that ICC express the Ba2+ -sensitive, inwardly rectifying K+ conductance in colonic muscles. This conductance is most probably a result of heterotetramers of Kir2 gene products, with this regulating resting potentials and the excitability of colonic muscles.


Clustering of Ca2+ transients in interstitial cells of Cajal defines slow wave duration.

  • Bernard T Drumm‎ et al.
  • The Journal of general physiology‎
  • 2017‎

Interstitial cells of Cajal (ICC) in the myenteric plexus region (ICC-MY) of the small intestine are pacemakers that generate rhythmic depolarizations known as slow waves. Slow waves depend on activation of Ca2+-activated Cl- channels (ANO1) in ICC, propagate actively within networks of ICC-MY, and conduct to smooth muscle cells where they generate action potentials and phasic contractions. Thus, mechanisms of Ca2+ regulation in ICC are fundamental to the motor patterns of the bowel. Here, we characterize the nature of Ca2+ transients in ICC-MY within intact muscles, using mice expressing a genetically encoded Ca2+ sensor, GCaMP3, in ICC. Ca2+ transients in ICC-MY display a complex firing pattern caused by localized Ca2+ release events arising from multiple sites in cell somata and processes. Ca2+ transients are clustered within the time course of slow waves but fire asynchronously during these clusters. The durations of Ca2+ transient clusters (CTCs) correspond to slow wave durations (plateau phase). Simultaneous imaging and intracellular electrical recordings revealed that the upstroke depolarization of slow waves precedes clusters of Ca2+ transients. Summation of CTCs results in relatively uniform Ca2+ responses from one slow wave to another. These Ca2+ transients are caused by Ca2+ release from intracellular stores and depend on ryanodine receptors as well as amplification from IP3 receptors. Reduced extracellular Ca2+ concentrations and T-type Ca2+ channel blockers decreased the number of firing sites and firing probability of Ca2+ transients. In summary, the fundamental electrical events of small intestinal muscles generated by ICC-MY depend on asynchronous firing of Ca2+ transients from multiple intracellular release sites. These events are organized into clusters by Ca2+ influx through T-type Ca2+ channels to sustain activation of ANO1 channels and generate the plateau phase of slow waves.


PDGFRα+ Interstitial Cells are Effector Cells of PACAP Signaling in Mouse and Human Colon.

  • Masaaki Kurahashi‎ et al.
  • Cellular and molecular gastroenterology and hepatology‎
  • 2022‎

Platelet-derived growth factor receptor α (PDGFRα)-positive interstitial cells (PIC) are interposed between enteric nerve fibers and smooth muscle cells (SMCs) in the tunica muscularis of the gastrointestinal tract. PIC have robust expression of small conductance Ca2+ activated K+ channels 3 (SK3 channels) and transduce inhibitory inputs from purinergic and sympathetic nerves in mouse and human colon. We investigated whether PIC also express pituitary adenylate cyclase-activating polypeptide (PACAP) receptors, PAC1 (PAC1R), and are involved in mediating inhibitory regulation of colonic contractions by PACAP in mouse and human colons.


Changes in interstitial cells and gastric excitability in a mouse model of sleeve gastrectomy.

  • Suk Bae Moon‎ et al.
  • PloS one‎
  • 2022‎

Obesity is a critical risk factor of several life-threatening diseases and the prevalence in adults has dramatically increased over the past ten years. In the USA the age-adjusted prevalence of obesity in adults was 42.4%, i.e., with a body mass index (BMI, weight (kg)/height (m)2) that exceeds 30 kg/m2. Obese individuals are at the higher risk of obesity-related diseases, co-morbid conditions, lower quality of life, and increased mortality more than those in the normal BMI range i.e., 18.5-24.9 kg/m2. Surgical treatment continues to be the most efficient and scientifically successful treatment for obese patients. Sleeve gastrectomy or vertical sleeve gastrectomy (VSG) is a relatively new gastric procedure to reduce body weight but is now the most popular bariatric operation. To date there have been few studies examining the changes in the cellular components and pacemaker activity that occur in the gastric wall following VSG and whether normal gastric activity recovers following VSG. In the present study we used a murine model to investigate the chronological changes of gastric excitability including electrophysiological, molecular and morphological changes in the gastric musculature following VSG. There is a significant disruption in specialized interstitial cells of Cajal in the gastric antrum following sleeve gastrectomy. This is associated with a loss of gastric pacemaker activity and post-junctional neuroeffector responses. Over a 4-month recovery period there was a gradual return in interstitial cells of Cajal networks, pacemaker activity and neural responses. These data describe for the first time the changes in gastric interstitial cells of Cajal networks, pacemaker activity and neuroeffector responses and the time-dependent recovery of ICC networks and normalization of motor activity and neural responses following VSG.


Role of detrusor PDGFRα+ cells in mouse model of cyclophosphamide-induced detrusor overactivity.

  • Haeyeong Lee‎ et al.
  • Scientific reports‎
  • 2022‎

Cyclophosphamide (CYP)-induced cystitis is a rodent model that shares many features common to the cystitis occurring in patients, including detrusor overactivity (DO). Platelet-derived growth factor receptor alpha positive (PDGFRα+) cells have been proposed to regulate muscle excitability in murine bladders during filling. PDGFRα+ cells express small conductance Ca2+-activated K+ channels (predominantly SK3) that provide stabilization of membrane potential during filling. We hypothesized that down-regulation of the regulatory functions of PDGFRα+ cells and/or loss of PDGFRα+ cells generates the DO in CYP-treated mice. After CYP treatment, transcripts of Pdgfrα and Kcnn3 and PDGFRα and SK3 protein were reduced in detrusor muscle extracts. The distribution of PDGFRα+ cells was also reduced. Inflammatory markers were increased in CYP-treated detrusor muscles. An SK channel agonist, CyPPA, increased outward current and hyperpolarization in PDGFRα+ cells. This response was significantly depressed in PDGFRα+ cells from CYP-treated bladders. Contractile experiments and ex vivo cystometry showed increased spontaneous contractions and transient contractions, respectively in CYP-treated bladders with a reduction of apamin sensitivity, that could be attributable to the reduction in the SK conductance expressed by PDGFRα+ cells. In summary, PDGFRα+ cells were reduced and the SK3 conductance was downregulated in CYP-treated bladders. These changes are consistent with the development of DO after CYP treatment.


Serotonin Deficiency Is Associated With Delayed Gastric Emptying.

  • Lai Wei‎ et al.
  • Gastroenterology‎
  • 2021‎

Gastrointestinal (GI) motility is regulated by serotonin (5-hydroxytryptamine [5-HT]), which is primarily produced by enterochromaffin (EC) cells in the GI tract. However, the precise roles of EC cell-derived 5-HT in regulating gastric motility remain a major point of conjecture. Using a novel transgenic mouse line, we investigated the distribution of EC cells and the pathophysiologic roles of 5-HT deficiency in gastric motility in mice and humans.


Molecular and functional characterization of detrusor PDGFRα positive cells in spinal cord injury-induced detrusor overactivity.

  • Ken Lee‎ et al.
  • Scientific reports‎
  • 2021‎

Volume accommodation occurs via a novel mechanism involving interstitial cells in detrusor muscles. The interstitial cells in the bladder are PDGFRα+, and they restrain the excitability of smooth muscle at low levels and prevents the development of transient contractions (TCs). A common clinical manifestation of spinal cord injury (SCI)-induced bladder dysfunction is detrusor overactivity (DO). Although a myogenic origin of DO after SCI has been suggested, a mechanism for development of SCI-induced DO has not been determined. In this study we hypothesized that SCI-induced DO is related to loss of function in the regulatory mechanism provided by PDGFRα+ cells. Our results showed that transcriptional expression of Pdgfra and Kcnn3 was decreased after SCI. Proteins encoded by these genes also decreased after SCI, and a reduction in PDGFRα+ cell density was also documented. Loss of PDGFRα+ cells was due to apoptosis. TCs in ex vivo bladders during filling increased dramatically after SCI, and this was related to the loss of regulation provided by SK channels, as we observed decreased sensitivity to apamin. These findings show that damage to the mechanism restraining muscle contraction during bladder filling that is provided by PDGFRα+ cells is causative in the development of DO after SCI.


miR-10b-5p rescues leaky gut linked with gastrointestinal dysmotility and diabetes.

  • Hannah Zogg‎ et al.
  • United European gastroenterology journal‎
  • 2023‎

Diabetes has substantive co-occurrence with disorders of gut-brain interactions (DGBIs). The pathophysiological and molecular mechanisms linking diabetes and DGBIs are unclear. MicroRNAs (miRNAs) are key regulators of diabetes and gut dysmotility. We investigated whether impaired gut barrier function is regulated by a key miRNA, miR-10b-5p, linking diabetes and gut dysmotility.


Inhibitory responses mediated by vagal nerve stimulation are diminished in stomachs of mice with reduced intramuscular interstitial cells of Cajal.

  • Elizabeth A H Beckett‎ et al.
  • Scientific reports‎
  • 2017‎

Intramuscular interstitial cells of Cajal (ICC-IM) are closely associated with enteric motor nerve terminals and electrically coupled to smooth muscle cells within the gastric musculature. Previous studies investigating the role of ICC-IM in motor neurotransmission have used indiscriminate electric field stimulation of neural elements within the gastric wall. To determine the role of ICC-IM in transduction of vagally-mediated motor input to gastric muscles electrical and mechanical responses to selective electrical vagal stimulation (EVS) were recorded from gastric fundus and antral regions of wild type and W/WV mice, which lack most ICC-IM. EVS evoked inhibitory junction potentials (IJPs) in wild type muscles that were attenuated or abolished by L-NNA. IJPs were rarely evoked in W/WV muscles by EVS, and not affected by L-NNA. EVS evoked relaxation of wild type stomachs, but the predominant response of W/WV stomachs was contraction. EVS applied after pre-contraction with bethanechol caused relaxation of wild type gastric tissues and these were inhibited by the nitric oxide synthase inhibitor L-NNA. Relaxation responses were of smaller amplitude in W/WV muscles and L-NNA did not attenuate relaxation responses in W/WV fundus muscles. These data suggest an important role for ICC-IM in vagally-mediated nitrergic relaxation in the proximal and distal stomach.


Premature contractions of the bladder are suppressed by interactions between TRPV4 and SK3 channels in murine detrusor PDGFRα+ cells.

  • Haeyeong Lee‎ et al.
  • Scientific reports‎
  • 2017‎

During filling, urinary bladder volume increases dramatically with little change in pressure. This is accomplished by suppressing contractions of the detrusor muscle that lines the bladder wall. Mechanisms responsible for regulating detrusor contraction during filling are poorly understood. Here we describe a novel pathway to stabilize detrusor excitability involving platelet-derived growth factor receptor-α positive (PDGFRα+) interstitial cells. PDGFRα+ cells express small conductance Ca2+-activated K+ (SK) and TRPV4 channels. We found that Ca2+ entry through mechanosensitive TRPV4 channels during bladder filling stabilizes detrusor excitability. GSK1016790A (GSK), a TRPV4 channel agonist, activated a non-selective cation conductance that coupled to activation of SK channels. GSK induced hyperpolarization of PDGFRα+ cells and decreased detrusor contractions. Contractions were also inhibited by activation of SK channels. Blockers of TRPV4 or SK channels inhibited currents activated by GSK and increased detrusor contractions. TRPV4 and SK channel blockers also increased contractions of intact bladders during filling. Similar enhancement of contractions occurred in bladders of Trpv4 -/- mice during filling. An SK channel activator (SKA-31) decreased contractions during filling, and rescued the overactivity of Trpv4 -/- bladders. Our findings demonstrate how Ca2+ influx through TRPV4 channels can activate SK channels in PDGFRα+ cells and prevent bladder overactivity during filling.


Inhibitory Neural Regulation of the Ca 2+ Transients in Intramuscular Interstitial Cells of Cajal in the Small Intestine.

  • Salah A Baker‎ et al.
  • Frontiers in physiology‎
  • 2018‎

Gastrointestinal motility is coordinated by enteric neurons. Both inhibitory and excitatory motor neurons innervate the syncytium consisting of smooth muscle cells (SMCs) interstitial cells of Cajal (ICC) and PDGFRα+ cells (SIP syncytium). Confocal imaging of mouse small intestines from animals expressing GCaMP3 in ICC were used to investigate inhibitory neural regulation of ICC in the deep muscular plexus (ICC-DMP). We hypothesized that Ca2+ signaling in ICC-DMP can be modulated by inhibitory enteric neural input. ICC-DMP lie in close proximity to the varicosities of motor neurons and generate ongoing Ca2+ transients that underlie activation of Ca2+-dependent Cl- channels and regulate the excitability of SMCs in the SIP syncytium. Electrical field stimulation (EFS) caused inhibition of Ca2+ for the first 2-3 s of stimulation, and then Ca2+ transients escaped from inhibition. The NO donor (DEA-NONOate) inhibited Ca2+ transients and Nω-Nitro-L-arginine (L-NNA) or a guanylate cyclase inhibitor (ODQ) blocked inhibition induced by EFS. Purinergic neurotransmission did not affect Ca2+ transients in ICC-DMP. Purinergic neurotransmission elicits hyperpolarization of the SIP syncytium by activation of K+ channels in PDGFRα+ cells. Generalized hyperpolarization of SIP cells by pinacidil (KATP agonist) or MRS2365 (P2Y1 agonist) also had no effect on Ca2+ transients in ICC-DMP. Peptidergic transmitter receptors (VIP and PACAP) are expressed in ICC and can modulate ICC-DMP Ca2+ transients. In summary Ca2+ transients in ICC-DMP are blocked by enteric inhibitory neurotransmission. ICC-DMP lack a voltage-dependent mechanism for regulating Ca2+ release, and this protects Ca2+ handling in ICC-DMP from membrane potential changes in other SIP cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: