Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

mLST8 Promotes mTOR-Mediated Tumor Progression.

  • Kyoko Kakumoto‎ et al.
  • PloS one‎
  • 2015‎

The activity of the mechanistic target of rapamycin (mTOR) is elevated in various types of human cancers, implicating a role in tumor progression. However, the molecular mechanisms underlying mTOR upregulation remain unclear. In this study, we found that the expression of mLST8, a required subunit of both mTOR complex 1 (mTORC1) and complex 2 (mTORC2), was upregulated in several human colon and prostate cancer cell lines and tissues. Knockdown of mLST8 significantly suppressed mTORC1 and mTORC2 complex formation, and it also inhibited tumor growth and invasiveness in human colon carcinoma (HCT116) and prostate cancer (LNCaP) cells. Overexpression of mLST8 induced anchorage-independent cell growth in normal epithelial cells (HaCaT), although mLST8 knockdown had no effect on normal cell growth. mLST8 knockdown reduced mTORC2-mediated phosphorylation of AKT in both cancer and normal cells, whereas it potently inhibited mTORC1-mediated phosphorylation of 4E-BP1 specifically in cancer cells. These results suggest that mLST8 plays distinct roles in normal and cancer cells, depending upon its expression level, and that mLST8 upregulation may contribute to tumor progression by constitutively activating both the mTORC1 and mTORC2 pathways.


The LKB1-SIK Pathway Controls Dendrite Self-Avoidance in Purkinje Cells.

  • Ken-Ichiro Kuwako‎ et al.
  • Cell reports‎
  • 2018‎

Strictly controlled dendrite patterning underlies precise neural connection. Dendrite self-avoidance is a crucial system preventing self-crossing and clumping of dendrites. Although many cell-surface molecules that regulate self-avoidance have been identified, the signaling pathway that orchestrates it remains poorly understood, particularly in mammals. Here, we demonstrate that the LKB1-SIK kinase pathway plays a pivotal role in the self-avoidance of Purkinje cell (PC) dendrites by ensuring dendritic localization of Robo2, a regulator of self-avoidance. LKB1 is activated in developing PCs, and PC-specific deletion of LKB1 severely disrupts the self-avoidance of PC dendrites without affecting gross morphology. SIK1 and SIK2, downstream kinases of LKB1, mediate LKB1-dependent dendrite self-avoidance. Furthermore, loss of LKB1 leads to significantly decreased Robo2 levels in the dendrite but not in the cell body. Finally, restoration of dendritic Robo2 level via overexpression largely rescues the self-avoidance defect in LKB1-deficient PCs. These findings reveal an LKB1-pathway-mediated developmental program that establishes dendrite self-avoidance.


Neural RNA-binding protein Musashi1 controls midline crossing of precerebellar neurons through posttranscriptional regulation of Robo3/Rig-1 expression.

  • Ken-ichiro Kuwako‎ et al.
  • Neuron‎
  • 2010‎

Precisely regulated spatiotemporal gene expression is essential for the establishment of neural circuits. In contrast to the increasing evidence for transcriptional regulation of axon guidance cues and receptors, the role of posttranscriptional regulation in axon guidance, especially in vivo, remains poorly characterized. Here, we demonstrate that the expression of Slit receptor Robo3/Rig-1, which plays crucial roles in axonal midline crossing, is regulated by a neural RNA-binding protein Musashi1 (Msi1). Msi1 binds to Robo3 mRNA through RNA recognition motifs and increases the protein level of Robo3 without affecting its mRNA level. In Msi1-deficient precerebellar neurons, Robo3 protein, but not its mRNA, is dramatically reduced. Moreover, similar to defects in Robo3-deficient mice, axonal midline crossing and neuronal migration of precerebellar neurons are severely impaired in Msi1-deficient mice. Together, these findings indicate that Msi1-mediated posttranscriptional regulation of Robo3 controls midline crossing of precerebellar neurons.


The polymicrogyria-associated GPR56 promoter preferentially drives gene expression in developing GABAergic neurons in common marmosets.

  • Ayako Y Murayama‎ et al.
  • Scientific reports‎
  • 2020‎

GPR56, a member of the adhesion G protein-coupled receptor family, is abundantly expressed in cells of the developing cerebral cortex, including neural progenitor cells and developing neurons. The human GPR56 gene has multiple presumptive promoters that drive the expression of the GPR56 protein in distinct patterns. Similar to coding mutations of the human GPR56 gene that may cause GPR56 dysfunction, a 15-bp homozygous deletion in the cis-regulatory element upstream of the noncoding exon 1 of GPR56 (e1m) leads to the cerebral cortex malformation and epilepsy. To clarify the expression profile of the e1m promoter-driven GPR56 in primate brain, we generated a transgenic marmoset line in which EGFP is expressed under the control of the human minimal e1m promoter. In contrast to the endogenous GPR56 protein, which is highly enriched in the ventricular zone of the cerebral cortex, EGFP is mostly expressed in developing neurons in the transgenic fetal brain. Furthermore, EGFP is predominantly expressed in GABAergic neurons, whereas the total GPR56 protein is evenly expressed in both GABAergic and glutamatergic neurons, suggesting the GABAergic neuron-preferential activity of the minimal e1m promoter. These results indicate a possible pathogenic role for GABAergic neuron in the cerebral cortex of patients with GPR56 mutations.


Elavl3 is essential for the maintenance of Purkinje neuron axons.

  • Yuki Ogawa‎ et al.
  • Scientific reports‎
  • 2018‎

Neuronal Elav-like (nElavl or neuronal Hu) proteins are RNA-binding proteins that regulate RNA stability and alternative splicing, which are associated with axonal and synaptic structures. nElavl proteins promote the differentiation and maturation of neurons via their regulation of RNA. The functions of nElavl in mature neurons are not fully understood, although Elavl3 is highly expressed in the adult brain. Furthermore, possible associations between nElavl genes and several neurodegenerative diseases have been reported. We investigated the relationship between nElavl functions and neuronal degeneration using Elavl3-/- mice. Elavl3-/- mice exhibited slowly progressive motor deficits leading to severe cerebellar ataxia, and axons of Elavl3-/- Purkinje cells were swollen (spheroid formation), followed by the disruption of synaptic formation of axonal terminals. Deficit in axonal transport and abnormalities in neuronal polarity was observed in Elavl3-/- Purkinje cells. These results suggest that nElavl proteins are crucial for the maintenance of axonal homeostasis in mature neurons. Moreover, Elavl3-/- mice are unique animal models that constantly develop slowly progressive axonal degeneration. Therefore, studies of Elavl3-/- mice will provide new insight regarding axonal degenerative processes.


MiR-424/503-mediated Rictor upregulation promotes tumor progression.

  • Chitose Oneyama‎ et al.
  • PloS one‎
  • 2013‎

mTOR complex 2 (mTORC2) signaling is upregulated in multiple types of human cancer, but the molecular mechanisms underlying its activation and regulation remain elusive. Here, we show that microRNA-mediated upregulation of Rictor, an mTORC2-specific component, contributes to tumor progression. Rictor is upregulated via the repression of the miR-424/503 cluster in human prostate and colon cancer cell lines that harbor c-Src upregulation and in Src-transformed cells. The tumorigenicity and invasive activity of these cells were suppressed by re-expression of miR-424/503. Rictor upregulation promotes formation of mTORC2 and induces activation of mTORC2, resulting in promotion of tumor growth and invasion. Furthermore, downregulation of miR-424/503 is associated with Rictor upregulation in colon cancer tissues. These findings suggest that the miR-424/503-Rictor pathway plays a crucial role in tumor progression.


MKP-7, a JNK phosphatase, blocks ERK-dependent gene activation by anchoring phosphorylated ERK in the cytoplasm.

  • Kouhei Masuda‎ et al.
  • Biochemical and biophysical research communications‎
  • 2010‎

MAPK phosphatase-7 (MKP-7) was identified as a JNK-specific phosphatase. However, despite its high specificity for JNK, MKP-7 interacts also with ERK. We previously showed that as a physiological consequence of their interaction, activated ERK phosphorylates MKP-7 at Ser-446, and stabilizing MKP-7. In the present study, we analyzed MKP-7 function in activation of ERK. A time-course experiment showed that both MKP-7 and its phosphatase-dead mutant prolonged mitogen-induced ERK phosphorylation, suggesting that MKP-7 functions as a scaffold for ERK. An important immunohistological finding was that nuclear translocation of phospho-ERK following PMA stimulation was blocked by co-expressed MKP-7 and, moreover, that phospho-ERK co-localized with MKP-7 in the cytoplasm. Reporter gene analysis indicated that MKP-7 blocks ERK-mediated transcription. Overall, our data indicate that MKP-7 down-regulates ERK-dependent gene expression by blocking nuclear accumulation of phospho-ERK.


The long non-coding RNA nuclear-enriched abundant transcript 1_2 induces paraspeckle formation in the motor neuron during the early phase of amyotrophic lateral sclerosis.

  • Yoshinori Nishimoto‎ et al.
  • Molecular brain‎
  • 2013‎

A long non-coding RNA (lncRNA), nuclear-enriched abundant transcript 1_2 (NEAT1_2), constitutes nuclear bodies known as "paraspeckles". Mutations of RNA binding proteins, including TAR DNA-binding protein-43 (TDP-43) and fused in sarcoma/translocated in liposarcoma (FUS/TLS), have been described in amyotrophic lateral sclerosis (ALS). ALS is a devastating motor neuron disease, which progresses rapidly to a total loss of upper and lower motor neurons, with consciousness sustained. The aim of this study was to clarify the interaction of paraspeckles with ALS-associated RNA-binding proteins, and to identify increased occurrence of paraspeckles in the nucleus of ALS spinal motor neurons.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: