Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

Early growth response 2 (Egr-2) expression is triggered by NF-κB activation.

  • Solmaz Nafez‎ et al.
  • Molecular and cellular neurosciences‎
  • 2015‎

Transcription factors are known to play multiple roles in cellular function. Investigators report that factors such as early growth response (Egr) protein and nuclear factor kappa B (NF-κB) are activated in the brain during cancer, brain injury, inflammation, and/or memory. To explore NF-κB activity further, we investigated the transcriptomes of hippocampal slices following electrical stimulation of NF-κB p50 subunit knockout mice (p50-/-) versus their controls (p50+/+). We found that the early growth response gene Egr-2 was upregulated by NF-κB activation, but only in p50+/+ hippocampal slices. We then stimulated HeLa cells and primary cortical neurons with tumor necrosis factor alpha (TNFα) to activate NF-κB and increase the expression of Egr-2. The Egr-2 promoter sequence was analyzed for NF-κB binding sites and chromatin immunoprecipitation (ChIP) assays were performed to confirm promoter occupancy in vivo. We discovered that NF-κB specifically binds to an NF-κB consensus binding site within the proximal promoter region of Egr-2. Luciferase assay demonstrated that p50 was able to transactivate the Egr-2 promoter in vitro. Small interfering RNA (siRNA)-mediated p50 knockdown corroborated other Egr-2 expression studies. We show for the first time a novel link between NF-κB activation and Egr-2 expression with Egr-2 expression directly controlled by the transcriptional activity of NF-κB.


Acute tetrahydrobiopterin supplementation attenuates sympathetic vasoconstrictor responsiveness in resting and contracting skeletal muscle of healthy rats.

  • Nicholas G Jendzjowsky‎ et al.
  • Physiological reports‎
  • 2014‎

Tetrahydrobiopterin (BH4) is an essential cofactor for the production of nitric oxide (NO) and supplementation with BH4 improves NO-dependent vasodilation. NO also reduces sympathetic vasoconstrictor responsiveness in resting and contracting skeletal muscle. Thus, we hypothesized that supplementation with BH4 would blunt sympathetic vasoconstrictor responsiveness in resting and contracting skeletal muscle. Sprague-Dawley rats (n = 15, 399 ± 57 g) were anesthetized and instrumented with an indwelling brachial artery catheter, femoral artery flow probe, and a stimulating electrode on the lumbar sympathetic chain. Triceps surae muscles were stimulated to contract rhythmically at 30% and 60% of maximal contractile force (MCF). The percentage change of femoral vascular conductance (%FVC) in response to sympathetic stimulations delivered at 2 and 5 Hz was determined at rest and during muscle contraction in control and acute BH4 supplementation (20 mg·kg(-1) + 10 mg·kg(-1)·h(-1), IA) conditions. BH4 reduced (P < 0.05) the vasoconstrictor response to sympathetic stimulation (i.e., decrease in FVC) at rest (Control: 2 Hz: -28 ± 5%FVC; 5 Hz: -45 ± 5%; BH4: 2 Hz: -17 ± 4%FVC; 5 Hz: -34 ± 7%FVC) and during muscular contraction at 30% MCF (Control: 2 Hz: -14 ± 6%FVC; 5 Hz: -28 ± 11%; BH4: 2 Hz: -6 ± 6%FVC; 5 Hz: -16 ± 10%) and 60% MCF (Control: 2 Hz: -7 ± 3%FVC; 5 Hz: -16 ± 6%FVC; BH4: 2 Hz: -2 ± 3%FVC; 5 Hz: -11 ± 6%FVC). These data are consistent with our hypothesis that acute BH4 supplementation decreases sympathetic vasoconstrictor responsiveness in resting and contracting skeletal muscle.


Improvements in skeletal muscle strength and cardiac function induced by resveratrol during exercise training contribute to enhanced exercise performance in rats.

  • Vernon W Dolinsky‎ et al.
  • The Journal of physiology‎
  • 2012‎

Exercise training (ET) improves endurance capacity by increasing both skeletal muscle mitochondrial number and function, as well as contributing to favourable cardiac remodelling.Interestingly, some of the benefits of regular exercise can also be mimicked by the naturally occurring polyphenol, resveratrol (RESV). However, it is not known whether RESV enhances physiological adaptations to ET. To investigate this, male Wistar rats were randomly assigned to a control chow diet or a chow diet that contained RESV (4 g kg⁻¹ of diet) and subsequently subjected to a programme of progressive treadmill running for 12 weeks. ET-induced improvements in exercise performance were enhanced by 21% (P <0.001) by the addition of RESV to the diet. In soleus muscle, ET+RESV increased both the twitch (1.8-fold; P <0.05) and tetanic(1.2-fold; P <0.05) forces generated during isometric contraction, compared to ET alone. In vivo echocardiography demonstrated that ET+RESV also increased the resting left ventricular ejection fraction by 10% (P <0.05), and reduced left ventricular wall stress compared to ET alone.These functional changes were accompanied by increased cardiac fatty acid oxidation (1.2-fold;P <0.05) and favourable changes in cardiac gene expression and signal transduction pathways that optimized the utilization of fatty acids in ET+RESV compared to ET alone. Overall, our findings provide evidence that the capacity for fatty acid oxidation is augmented by the addition of RESV to the diet during ET, and that this may contribute to the improved physical performance of rats following ET.


Conditioning electrical stimulation promotes functional nerve regeneration.

  • Jenna-Lynn Senger‎ et al.
  • Experimental neurology‎
  • 2019‎

Peripheral nerve regeneration following injury is often incomplete, resulting in significant personal and socioeconomic costs. Although a conditioning crush lesion prior to surgical nerve transection and repair greatly promotes nerve regeneration and functional recovery, feasibility and ethical considerations have hindered its clinical applicability. In a recent proof of principle study, we demonstrated that conditioning electrical stimulation (CES) had effects on early nerve regeneration, similar to that seen in conditioning crush lesions (CCL). To convincingly determine its clinical utility, establishing the effects of CES on target reinnervation and functional outcomes is of utmost importance. In this study, we found that CES improved nerve regeneration and reinnervation well beyond that of CCL. Specifically, compared to CCL, CES resulted in greater intraepidermal skin and NMJ reinnervation, and greater physiological and functional recovery including mechanosensation, compound muscle action potential on nerve conduction studies, normalization of gait pattern, and motor performance on the horizontal ladder test. These findings have direct clinical relevance as CES could be delivered at the bedside before scheduled nerve surgery.


NF-κB p65 Attenuates Cardiomyocyte PGC-1α Expression in Hypoxia.

  • Inna Rabinovich-Nikitin‎ et al.
  • Cells‎
  • 2022‎

Hypoxia exerts broad effects on cardiomyocyte function and viability, ranging from altered metabolism and mitochondrial physiology to apoptotic or necrotic cell death. The transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is a key regulator of cardiomyocyte metabolism and mitochondrial function and is down-regulated in hypoxia; however, the underlying mechanism is incompletely resolved. Using primary rat cardiomyocytes coupled with electrophoretic mobility shift and luciferase assays, we report that hypoxia impaired mitochondrial energetics and resulted in an increase in nuclear localization of the Nuclear Factor-κB (NF-κB) p65 subunit, and the association of p65 with the PGC-1α proximal promoter. Tumor necrosis factor α (TNFα), an activator of NF-κB signaling, similarly reduced PGC-1α expression and p65 binding to the PGC-1α promoter in a dose-dependent manner, and TNFα-mediated down-regulation of PGC-1α expression could be reversed by the NF-κB inhibitor parthenolide. RNA-seq analysis revealed that cardiomyocytes isolated from p65 knockout mice exhibited alterations in genes associated with chromatin remodeling. Decreased PGC-1α promoter transactivation by p65 could be partially reversed by the histone deacetylase inhibitor trichostatin A. These results implicate NF-κB signaling, and specifically p65, as a potent inhibitor of PGC-1α expression in cardiac myocyte hypoxia.


Regulation of cardiac fibroblast MMP2 gene expression by scleraxis.

  • Raghu S Nagalingam‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2018‎

Remodeling of the cardiac extracellular matrix is responsible for a number of the detrimental effects on heart function that arise secondary to hypertension, diabetes and myocardial infarction. This remodeling consists both of an increase in new matrix protein synthesis, and an increase in the expression of matrix metalloproteinases (MMPs) that degrade existing matrix structures. Previous studies utilizing knockout mice have demonstrated clearly that MMP2 plays a pathogenic role during matrix remodeling, thus it is important to understand the mechanisms that regulate MMP2 gene expression. We have shown that the transcription factor scleraxis is an important inducer of extracellular matrix gene expression in the heart that may also control MMP2 expression. In the present study, we demonstrate that scleraxis directly transactivates the proximal MMP2 gene promoter, resulting in increased histone acetylation, and identify a specific E-box sequence in the promoter to which scleraxis binds. Cardiac myo-fibroblasts isolated from scleraxis knockout mice exhibited dramatically decreased MMP2 expression; however, scleraxis over-expression in knockout cells could rescue this loss. We further show that regulation of MMP2 gene expression by the pro-fibrotic cytokine TGFβ occurs via a scleraxis-dependent mechanism: TGFβ induces recruitment of scleraxis to the MMP2 promoter, and TGFβ was unable to up-regulate MMP2 expression in cells lacking scleraxis due to either gene knockdown or knockout. These results reveal that scleraxis can exert control over both extracellular matrix synthesis and breakdown, and thus may contribute to matrix remodeling in wound healing and disease.


Asymmetry in signal propagation between the soma and dendrites plays a key role in determining dendritic excitability in motoneurons.

  • Hojeong Kim‎ et al.
  • PloS one‎
  • 2014‎

It is widely recognized that propagation of electrophysiological signals between the soma and dendrites of neurons differs depending on direction, i.e. it is asymmetric. How this asymmetry influences the activation of voltage-gated dendritic channels, and consequent neuronal behavior, remains unclear. Based on the analysis of asymmetry in several types of motoneurons, we extended our previous methodology for reducing a fully reconstructed motoneuron model to a two-compartment representation that preserved asymmetric signal propagation. The reduced models accurately replicated the dendritic excitability and the dynamics of the anatomical model involving a persistent inward current (PIC) dispersed over the dendrites. The relationship between asymmetric signal propagation and dendritic excitability was investigated using the reduced models while varying the asymmetry in signal propagation between the soma and the dendrite with PIC density constant. We found that increases in signal attenuation from soma to dendrites increased the activation threshold of a PIC (hypo-excitability), whereas increases in signal attenuation from dendrites to soma decreased the activation threshold of a PIC (hyper-excitability). These effects were so strong that reversing the asymmetry in the soma-to-dendrite vs. dendrite-to-soma attenuation, reversed the correlation between PIC threshold and distance of this current source from the soma. We propose the tight relation of the asymmetric signal propagation to the input resistance in the dendrites as a mechanism underlying the influence of the asymmetric signal propagation on the dendritic excitability. All these results emphasize the importance of maintaining the physiological asymmetry in dendritic signaling not only for normal function of the cells but also for biophysically realistic simulations of dendritic excitability.


IH activity is increased in populations of slow versus fast motor axons of the rat.

  • Chad Lorenz‎ et al.
  • Frontiers in human neuroscience‎
  • 2014‎

Much is known about the electrophysiological variation in motoneuron somata across different motor units. However, comparatively less is known about electrophysiological variation in motor axons and how this could impact function or electrodiagnosis in healthy or diseased states. We performed nerve excitability testing on two groups of motor axons in Sprague-Dawley rats that are known to differ significantly in their chronic daily activity patterns and in the relative proportion of motor unit types: one group innervating the soleus ("slow motor axons") and the other group innervating the tibialis anterior ("fast motor axons") muscles. We found that slow motor axons have significantly larger accommodation compared to fast motor axons upon application of a 100 ms hyperpolarizing conditioning stimulus that is 40% of axon threshold (Z = 3.24, p = 0.001) or 20% of axon threshold (Z = 2.67, p = 0.008). Slow motor axons had larger accommodation to hyperpolarizing currents in the current-threshold measurement (-80% Z = 3.07, p = 0.002; -90% Z = 2.98, p = 0.003). In addition, we found that slow motor axons have a significantly smaller rheobase than fast motor axons (Z = -1.99, p = 0.047) accompanied by a lower threshold in stimulus-response curves. The results provide evidence that slow motor axons have greater activity of the hyperpolarization-activated inwardly rectifying cation conductance (IH) than fast motor axons. It is possible that this difference between fast and slow axons is caused by an adaptation to their chronic differences in daily activity patterns, and that this adaptation might have a functional effect on the motor unit. Moreover, these findings indicate that slow and fast motor axons may react differently to pathological conditions.


The transcription factor scleraxis is a critical regulator of cardiac fibroblast phenotype.

  • Rushita A Bagchi‎ et al.
  • BMC biology‎
  • 2016‎

Resident fibroblasts synthesize the cardiac extracellular matrix, and can undergo phenotype conversion to myofibroblasts to augment matrix production, impairing function and contributing to organ failure. A significant gap in our understanding of the transcriptional regulation of these processes exists. Given the key role of this phenotype conversion in fibrotic disease, the identification of such novel transcriptional regulators may yield new targets for therapies for fibrosis.


A modelling study of locomotion-induced hyperpolarization of voltage threshold in cat lumbar motoneurones.

  • Yue Dai‎ et al.
  • The Journal of physiology‎
  • 2002‎

During fictive locomotion the excitability of adult cat lumbar motoneurones is increased by a reduction (a mean hyperpolarization of approximately 6.0 mV) of voltage threshold (Vth) for action potential (AP) initiation that is accompanied by only small changes in AP height and width. Further examination of the experimental data in the present study confirms that Vth lowering is present to a similar degree in both the hyperpolarized and depolarized portions of the locomotor step cycle. This indicates that Vth reduction is a modulation of motoneurone membrane currents throughout the locomotor state rather than being related to the phasic synaptic input within the locomotor cycle. Potential ionic mechanisms of this locomotor-state-dependent increase in excitability were examined using three five-compartment models of the motoneurone innervating slow, fast fatigue resistant and fast fatigable muscle fibres. Passive and active membrane conductances were set to produce input resistance, rheobase, afterhyperpolarization (AHP) and membrane time constant values similar to those measured in adult cat motoneurones in non-locomoting conditions. The parameters of 10 membrane conductances were then individually altered in an attempt to replicate the hyperpolarization of Vth that occurs in decerebrate cats during fictive locomotion. The goal was to find conductance changes that could produce a greater than 3 mV hyperpolarization of Vth with only small changes in AP height (< 3 mV) and width (< 1.2 ms). Vth reduction without large changes in AP shape could be produced either by increasing fast sodium current or by reducing delayed rectifier potassium current. The most effective Vth reductions were achieved by either increasing the conductance of fast sodium channels or by hyperpolarizing the voltage dependency of their activation. These changes were particularly effective when localized to the initial segment. Reducing the conductance of delayed rectifier channels or depolarizing their activation produced similar but smaller changes in Vth. Changes in current underlying the AHP, the persistent Na(+) current, three Ca(2+) currents, the "h" mixed cation current, the "A" potassium current and the leak current were either ineffective in reducing Vth or also produced gross changes in the AP. It is suggested that the increased excitability of motoneurones during locomotion could be readily accomplished by hyperpolarizing the voltage dependency of fast sodium channels in the axon hillock by a hitherto unknown neuromodulatory action.


Ski drives an acute increase in MMP-9 gene expression and release in primary cardiac myofibroblasts.

  • Natalie Landry‎ et al.
  • Physiological reports‎
  • 2018‎

Many etiologies of heart disease are characterized by expansion and remodeling of the cardiac extracellular matrix (ECM or matrix) which results in cardiac fibrosis. Cardiac fibrosis is mediated in cardiac fibroblasts by TGF-β1 /R-Smad2/3 signaling. Matrix component proteins are synthesized by activated resident cardiac fibroblasts known as myofibroblasts (MFB). These events are causal to heart failure with diastolic dysfunction and reduced cardiac filling. We have shown that exogenous Ski, a TGF-β1 /Smad repressor, localizes in the cellular nucleus and deactivates cardiac myofibroblasts. This deactivation is associated with reduction of myofibroblast marker protein expression in vitro, including alpha smooth muscle actin (α-SMA) and extracellular domain-A (ED-A) fibronectin. We hypothesize that Ski also acutely regulates MMP expression in cardiac MFB. While acute Ski overexpression in cardiac MFB in vitro was not associated with any change in intracellular MMP-9 protein expression versus LacZ-treated controls,exogenous Ski caused elevated MMP-9 mRNA expression and increased MMP-9 protein secretion versus controls. Zymographic analysis revealed increased MMP-9-specific gelatinase activity in myofibroblasts overexpressing Ski versus controls. Moreover, Ski expression was attended by reduced paxillin and focal adhesion kinase phosphorylation (FAK - Tyr 397) versus controls. As myofibroblasts are hypersecretory and less motile relative to fibroblasts, Ski's reduction of paxillin and FAK expression may reflect the relative deactivation of myofibroblasts. Thus, in addition to its known antifibrotic effects, Ski overexpression elevates expression and extracellular secretion/release of MMP-9 and thus may facilitate internal cytoskeletal remodeling as well as extracellular ECM components. Further, as acute TGF-β1 treatment of primary cardiac MFB is known to cause rapid translocation of Ski to the nucleus, our data support an autoregulatory role for Ski in mediating cardiac ECM accumulation.


The retrograde frequency response of passive dendritic trees constrains the nonlinear firing behaviour of a reduced neuron model.

  • Hojeong Kim‎ et al.
  • PloS one‎
  • 2012‎

Our goal was to investigate how the propagation of alternating signals (i.e. AC), like action potentials, into the dendrites influenced nonlinear firing behaviour of motor neurons using a systematically reduced neuron model. A recently developed reduced modeling approach using only steady-current (i.e. DC) signaling was analytically expanded to retain features of the frequency-response analysis carried out in multicompartment anatomically reconstructed models. Bifurcation analysis of the extended model showed that the typically overlooked parameter of AC amplitude attenuation was positively correlated with the current threshold for the activation of a plateau potential in the dendrite. Within the multiparameter space map of the reduced model the region demonstrating "fully-bistable" firing was bounded by directional DC attenuation values that were negatively correlated to AC attenuation. Based on these results we conclude that analytically derived reduced models of dendritic trees should be fit on DC and AC signaling, as both are important biophysical parameters governing the nonlinear firing behaviour of motor neurons.


Regulation of scleraxis transcriptional activity by serine phosphorylation.

  • Rushita A Bagchi‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2016‎

Cardiac fibroblasts are the major extracellular matrix producing cells in the heart. Our laboratory was the first to demonstrate that the transcription factor scleraxis induces collagen 1α2 expression in both cardiac fibroblasts and myofibroblasts. Here we identify a novel post-translational mechanism by which scleraxis activity is regulated and determine its effect on transcription of genes targeted by scleraxis. Putative serine phosphorylation sites on scleraxis were revealed by in silico analysis using motif prediction software. Mutation of key serine residues to alanine, which cannot be phosphorylated, significantly attenuated the expression of fibrillar type I collagen and myofibroblast marker genes that are normally induced by scleraxis. Down-regulation of collagen 1α2 expression was due to reduced binding of the non-phosphorylated scleraxis mutant to specific E-box DNA-binding sites within the promoter as determined by chromatin immunoprecipitation in human cardiac myofibroblast cells and by electrophoretic mobility shift assay. This is the first evidence suggesting that scleraxis is phosphorylated under basal conditions. The phosphorylation sequence matched that targeted by Casein Kinase 2, and inhibition of this kinase activity disrupted the ability of scleraxis to modulate the expression of its target genes while also attenuating TGFβ-induced expression of type I collagen and myofibroblast phenotype conversion marker genes. These results demonstrate a novel mechanism for regulation of scleraxis activity, which may prove to be tractable for pharmacologic manipulation.


Synergistic roles of scleraxis and Smads in the regulation of collagen 1α2 gene expression.

  • Rushita A Bagchi‎ et al.
  • Biochimica et biophysica acta‎
  • 2012‎

Cardiac fibrosis is marked by increased deposition of extracellular matrix components including fibrillar collagens, leading to impaired cardiac contractility and function. We recently demonstrated that the transcription factor scleraxis is expressed in collagen-producing cardiac fibroblasts and myofibroblasts, is up-regulated in the collagen-rich scar following myocardial infarction and is sufficient to transactivate the human collagen 1α2 (COL1A2) gene, suggesting a central role in fibrosis. Here we describe the mechanism of scleraxis-mediated regulation of the COL1A2 promoter. Using chromatin immunoprecipitation in primary human cardiac fibroblasts in combination with luciferase assays, we demonstrate that two E box sequences within the proximal COL1A2 promoter are required for scleraxis-mediated transactivation. Expression of scleraxis itself was induced by receptor Smad3, an effector of the pro-fibrotic growth factor TGF-β(1), and attenuated by inhibitory Smad7. TGF-β(1) augmented the effect of scleraxis on COL1A2 transactivation, an effect which was due to synergy between scleraxis and Smad3. Mutation of the COL1A2 Smad-binding element significantly attenuated the ability of scleraxis to transactivate the promoter, while mutation of the scleraxis-interacting E boxes attenuated the effect of Smad3, suggesting that these factors form a common signaling complex at the promoter. COL1A2 promoter transactivation and Col1α2 gene expression in cardiac fibroblasts were completely abrogated by a scleraxis basic domain deletion mutant in a dominant negative fashion, blocking the ability of TGF-β(1) to activate collagen synthesis and suggesting that scleraxis-DNA interaction is absolutely required for this process. Scleraxis thus appears to play a key role in the transcriptional regulation of type I collagen synthesis.


CEBPβ regulation of endogenous IGF-1 in adult sensory neurons can be mobilized to overcome diabetes-induced deficits in bioenergetics and axonal outgrowth.

  • Mohamad-Reza Aghanoori‎ et al.
  • Cellular and molecular life sciences : CMLS‎
  • 2022‎

Aberrant insulin-like growth factor 1 (IGF-1) signaling has been proposed as a contributing factor to the development of neurodegenerative disorders including diabetic neuropathy, and delivery of exogenous IGF-1 has been explored as a treatment for Alzheimer's disease and amyotrophic lateral sclerosis. However, the role of autocrine/paracrine IGF-1 in neuroprotection has not been well established. We therefore used in vitro cell culture systems and animal models of diabetic neuropathy to characterize endogenous IGF-1 in sensory neurons and determine the factors regulating IGF-1 expression and/or affecting neuronal health. Single-cell RNA sequencing (scRNA-Seq) and in situ hybridization analyses revealed high expression of endogenous IGF-1 in non-peptidergic neurons and satellite glial cells (SGCs) of dorsal root ganglia (DRG). Brain cortex and DRG had higher IGF-1 gene expression than sciatic nerve. Bidirectional transport of IGF-1 along sensory nerves was observed. Despite no difference in IGF-1 receptor levels, IGF-1 gene expression was significantly (P < 0.05) reduced in liver and DRG from streptozotocin (STZ)-induced type 1 diabetic rats, Zucker diabetic fatty (ZDF) rats, mice on a high-fat/ high-sugar diet and db/db type 2 diabetic mice. Hyperglycemia suppressed IGF-1 gene expression in cultured DRG neurons and this was reversed by exogenous IGF-1 or the aldose reductase inhibitor sorbinil. Transcription factors, such as NFAT1 and CEBPβ, were also less enriched at the IGF-1 promoter in DRG from diabetic rats vs control rats. CEBPβ overexpression promoted neurite outgrowth and mitochondrial respiration, both of which were blunted by knocking down or blocking IGF-1. Suppression of endogenous IGF-1 in diabetes may contribute to neuropathy and its upregulation at the transcriptional level by CEBPβ can be a promising therapeutic approach.


Regulation of Cardiac Fibroblast GLS1 Expression by Scleraxis.

  • Sikta Chattopadhyaya‎ et al.
  • Cells‎
  • 2022‎

Fibrosis is an energy-intensive process requiring the activation of fibroblasts to myofibroblasts, resulting in the increased synthesis of extracellular matrix proteins. Little is known about the transcriptional control of energy metabolism in cardiac fibroblast activation, but glutaminolysis has been implicated in liver and lung fibrosis. Here we explored how pro-fibrotic TGFβ and its effector scleraxis, which drive cardiac fibroblast activation, regulate genes involved in glutaminolysis, particularly the rate-limiting enzyme glutaminase (GLS1). The GLS1 inhibitor CB-839 attenuated TGFβ-induced fibroblast activation. Cardiac fibroblast activation to myofibroblasts by scleraxis overexpression increased glutaminolysis gene expression, including GLS1, while cardiac fibroblasts from scleraxis-null mice showed reduced expression. TGFβ induced GLS1 expression and increased intracellular glutamine and glutamate levels, indicative of increased glutaminolysis, but in scleraxis knockout cells, these measures were attenuated, and the response to TGFβ was lost. The knockdown of scleraxis in activated cardiac fibroblasts reduced GLS1 expression by 75%. Scleraxis transactivated the human GLS1 promoter in luciferase reporter assays, and this effect was dependent on a key scleraxis-binding E-box motif. These results implicate scleraxis-mediated GLS1 expression as a key regulator of glutaminolysis in cardiac fibroblast activation, and blocking scleraxis in this process may provide a means of starving fibroblasts of the energy required for fibrosis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: