Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 34 papers

The TCR's sensitivity to self peptide-MHC dictates the ability of naive CD8(+) T cells to respond to foreign antigens.

  • Ross B Fulton‎ et al.
  • Nature immunology‎
  • 2015‎

The strength with which complexes of self peptide and major histocompatibility complex (MHC) proteins are recognized by the T cell antigen receptor (TCR) dictates the homeostasis of naive CD8(+) T cells, but its effect on reactivity to foreign antigens is controversial. As expression of the negative regulator CD5 correlates with self-recognition, we studied CD5(lo) and CD5(hi) naive CD8(+) T cells. Gene-expression characteristics suggested CD5(hi) cells were better poised for reactivity and differentiation than were CD5(lo) cells, and we found that the CD5(hi) pool also exhibited more efficient clonal recruitment and expansion, as well as enhanced reactivity to inflammatory cues, during the recognition of foreign antigen. However, the recognition of complexes of foreign peptide and MHC was similar for both subsets. Thus, CD8(+) T cells with higher self-reactivity dominate the immune response to foreign antigens, with implications for T cell repertoire diversity and autoimmunity.


Tolerance is established in polyclonal CD4(+) T cells by distinct mechanisms, according to self-peptide expression patterns.

  • Deepali Malhotra‎ et al.
  • Nature immunology‎
  • 2016‎

Studies of repertoires of mouse monoclonal CD4(+) T cells have revealed several mechanisms of self-tolerance; however, which mechanisms operate in normal repertoires is unclear. Here we studied polyclonal CD4(+) T cells specific for green fluorescent protein expressed in various organs, which allowed us to determine the effects of specific expression patterns on the same epitope-specific T cells. Peptides presented uniformly by thymic antigen-presenting cells were tolerated by clonal deletion, whereas peptides excluded from the thymus were ignored. Peptides with limited thymic expression induced partial clonal deletion and impaired effector T cell potential but enhanced regulatory T cell potential. These mechanisms were also active for T cell populations specific for endogenously expressed self antigens. Thus, the immunotolerance of polyclonal CD4(+) T cells was maintained by distinct mechanisms, according to self-peptide expression patterns.


CD4(+) T cell anergy prevents autoimmunity and generates regulatory T cell precursors.

  • Lokesh A Kalekar‎ et al.
  • Nature immunology‎
  • 2016‎

The role of anergy, an acquired state of T cell functional unresponsiveness, in natural peripheral tolerance remains unclear. In this study, we found that anergy was selectively induced in fetal antigen-specific maternal CD4(+) T cells during pregnancy. A naturally occurring subpopulation of anergic polyclonal CD4(+) T cells, enriched for self antigen-specific T cell antigen receptors, was also present in healthy hosts. Neuropilin-1 expression in anergic conventional CD4(+) T cells was associated with hypomethylation of genes related to thymic regulatory T cells (Treg cells), and this correlated with their ability to differentiate into Foxp3(+) Treg cells that suppressed immunopathology. Thus, our data suggest that not only is anergy induction important in preventing autoimmunity but also it generates the precursors for peripheral Treg cell differentiation.


The Incubation Period of Primary Epstein-Barr Virus Infection: Viral Dynamics and Immunologic Events.

  • Samantha K Dunmire‎ et al.
  • PLoS pathogens‎
  • 2015‎

Epstein-Barr virus (EBV) is a human herpesvirus that causes acute infectious mononucleosis and is associated with cancer and autoimmune disease. While many studies have been performed examining acute disease in adults following primary infection, little is known about the virological and immunological events during EBV's lengthy 6 week incubation period owing to the challenge of collecting samples from this stage of infection. We conducted a prospective study in college students with special emphasis on frequent screening to capture blood and oral wash samples during the incubation period. Here we describe the viral dissemination and immune response in the 6 weeks prior to onset of acute infectious mononucleosis symptoms. While virus is presumed to be present in the oral cavity from time of transmission, we did not detect viral genomes in the oral wash until one week before symptom onset, at which time viral genomes were present in high copy numbers, suggesting loss of initial viral replication control. In contrast, using a sensitive nested PCR method, we detected viral genomes at low levels in blood about 3 weeks before symptoms. However, high levels of EBV in the blood were only observed close to symptom onset-coincident with or just after increased viral detection in the oral cavity. These data imply that B cells are the major reservoir of virus in the oral cavity prior to infectious mononucleosis. The early presence of viral genomes in the blood, even at low levels, correlated with a striking decrease in the number of circulating plasmacytoid dendritic cells well before symptom onset, which remained depressed throughout convalescence. On the other hand, natural killer cells expanded only after symptom onset. Likewise, CD4+ Foxp3+ regulatory T cells decreased two fold, but only after symptom onset. We observed no substantial virus specific CD8 T cell expansion during the incubation period, although polyclonal CD8 activation was detected in concert with viral genomes increasing in the blood and oral cavity, possibly due to a systemic type I interferon response. This study provides the first description of events during the incubation period of natural EBV infection in humans and definitive data upon which to formulate theories of viral control and disease pathogenesis.


Classical MHC expression by DP thymocytes impairs the selection of non-classical MHC restricted innate-like T cells.

  • Hristo Georgiev‎ et al.
  • Nature communications‎
  • 2021‎

Conventional T cells are selected by peptide-MHC expressed by cortical epithelial cells in the thymus, and not by cortical thymocytes themselves that do not express MHC I or MHC II. Instead, cortical thymocytes express non-peptide presenting MHC molecules like CD1d and MR1, and promote the selection of PLZF+ iNKT and MAIT cells, respectively. Here, we report an inducible class-I transactivator mouse that enables the expression of peptide presenting MHC I molecules in different cell types. We show that MHC I expression in DP thymocytes leads to expansion of peptide specific PLZF+ innate-like (PIL) T cells. Akin to iNKT cells, PIL T cells differentiate into three functional effector subsets in the thymus, and are dependent on SAP signaling. We demonstrate that PIL and NKT cells compete for a narrow niche, suggesting that the absence of peptide-MHC on DP thymocytes facilitates selection of non-peptide specific lymphocytes.


Primary EBV infection induces an expression profile distinct from other viruses but similar to hemophagocytic syndromes.

  • Samantha K Dunmire‎ et al.
  • PloS one‎
  • 2014‎

Epstein-Barr Virus (EBV) causes infectious mononucleosis and establishes lifelong infection associated with cancer and autoimmune disease. To better understand immunity to EBV, we performed a prospective study of natural infection in healthy humans. Transcriptome analysis defined a striking and reproducible expression profile during acute infection but no lasting gene changes were apparent during latent infection. Comparing the EBV response profile to multiple other acute viral infections, including influenza A (influenza), respiratory syncytial virus (RSV), human rhinovirus (HRV), attenuated yellow fever virus (YFV), and Dengue fever virus (DENV), revealed similarity only to DENV. The signature shared by EBV and DENV was also present in patients with hemophagocytic syndromes, suggesting these two viruses cause uncontrolled inflammatory responses. Interestingly, while EBV induced a strong type I interferon response, a subset of interferon induced genes, including MX1, HERC5, and OAS1, were not upregulated, suggesting a mechanism by which viral antagonism of immunity results in a profound inflammatory response. These data provide an important first description of the response to a natural herpesvirus infection in humans.


Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells.

  • Cara N Skon‎ et al.
  • Nature immunology‎
  • 2013‎

Cell-mediated immunity critically depends on the localization of lymphocytes at sites of infection. While some memory T cells recirculate, a distinct lineage (resident memory T cells (T(RM) cells)) are embedded in nonlymphoid tissues (NLTs) and mediate potent protective immunity. However, the defining transcriptional basis for the establishment of T(RM) cells is unknown. We found that CD8(+) T(RM) cells lacked expression of the transcription factor KLF2 and its target gene S1pr1 (which encodes S1P1, a receptor for sphingosine 1-phosphate). Forced expression of S1P1 prevented the establishment of T(RM) cells. Cytokines that induced a T(RM) cell phenotype (including transforming growth factor-β (TGF-β), interleukin 33 (IL-33) and tumor-necrosis factor) elicited downregulation of KLF2 expression in a pathway dependent on phosphatidylinositol-3-OH kinase (PI(3)K) and the kinase Akt, which suggested environmental regulation. Hence, regulation of KLF2 and S1P1 provides a switch that dictates whether CD8(+) T cells commit to recirculating or tissue-resident memory populations.


Costimulation via the tumor-necrosis factor receptor superfamily couples TCR signal strength to the thymic differentiation of regulatory T cells.

  • Shawn A Mahmud‎ et al.
  • Nature immunology‎
  • 2014‎

Regulatory T cells (Treg cells) express members of the tumor-necrosis factor (TNF) receptor superfamily (TNFRSF), but the role of those receptors in the thymic development of Treg cells is undefined. We found here that Treg cell progenitors had high expression of the TNFRSF members GITR, OX40 and TNFR2. Expression of those receptors correlated directly with the signal strength of the T cell antigen receptor (TCR) and required the coreceptor CD28 and the kinase TAK1. The neutralization of ligands that are members of the TNF superfamily (TNFSF) diminished the development of Treg cells. Conversely, TNFRSF agonists enhanced the differentiation of Treg cell progenitors by augmenting responsiveness of the interleukin 2 receptor (IL-2R) and transcription factor STAT5. Costimulation with the ligand of GITR elicited dose-dependent enrichment for cells of lower TCR affinity in the Treg cell repertoire. In vivo, combined inhibition of GITR, OX40 and TNFR2 abrogated the development of Treg cells. Thus, expression of members of the TNFRSF on Treg cell progenitors translated strong TCR signals into molecular parameters that specifically promoted the development of Treg cells and shaped the Treg cell repertoire.


The lineage stability and suppressive program of regulatory T cells require protein O-GlcNAcylation.

  • Bing Liu‎ et al.
  • Nature communications‎
  • 2019‎

Regulatory T (Treg) cells control self-tolerance, inflammatory responses and tissue homeostasis. In mature Treg cells, continued expression of FOXP3 maintains lineage identity, while T cell receptor (TCR) signaling and interleukin-2 (IL-2)/STAT5 activation support the suppressive effector function of Treg cells, but how these regulators synergize to control Treg cell homeostasis and function remains unclear. Here we show that TCR-activated posttranslational modification by O-linked N-Acetylglucosamine (O-GlcNAc) stabilizes FOXP3 and activates STAT5, thus integrating these critical signaling pathways. O-GlcNAc-deficient Treg cells develop normally but display modestly reduced FOXP3 expression, strongly impaired lineage stability and effector function, and ultimately fatal autoimmunity in mice. Moreover, deficiency in protein O-GlcNAcylation attenuates IL-2/STAT5 signaling, while overexpression of a constitutively active form of STAT5 partially ameliorates Treg cell dysfunction and systemic inflammation in O-GlcNAc deficient mice. Collectively, our data demonstrate that protein O-GlcNAcylation is essential for lineage stability and effector function in Treg cells.


IL-4 sensitivity shapes the peripheral CD8+ T cell pool and response to infection.

  • Kristin R Renkema‎ et al.
  • The Journal of experimental medicine‎
  • 2016‎

Previous studies have revealed that a population of innate memory CD8(+) T cells is generated in response to IL-4, first appearing in the thymus and bearing high expression levels of Eomesodermin (Eomes) but not T-bet. However, the antigen specificity and functional properties of these cells is poorly defined. In this study, we show that IL-4 regulates not only the frequency and function of innate memory CD8(+) T cells, but also regulates Eomes expression levels and functional reactivity of naive CD8(+) T cells. Lack of IL-4 responsiveness attenuates the capacity of CD8(+) T cells to mount a robust response to lymphocytic choriomeningitis virus infection, with both quantitative and qualitative effects on effector and memory antigen-specific CD8(+) T cells. Unexpectedly, we found that, although numerically rare, memory phenotype CD8(+) T cells in IL-4Rα-deficient mice exhibited enhanced reactivity after in vitro and in vivo stimulation. Importantly, our data revealed that these effects of IL-4 exposure occur before, not during, infection. Together, these data show that IL-4 influences the entire peripheral CD8(+) T cell pool, influencing expression of T-box transcription factors, functional reactivity, and the capacity to respond to infection. These findings indicate that IL-4, a canonical Th2 cell cytokine, can sometimes promote rather than impair Th1 cell-type immune responses.


Thymic tuft cells promote an IL-4-enriched medulla and shape thymocyte development.

  • Corey N Miller‎ et al.
  • Nature‎
  • 2018‎

The thymus is responsible for generating a diverse yet self-tolerant pool of T cells1. Although the thymic medulla consists mostly of developing and mature AIRE+ epithelial cells, recent evidence has suggested that there is far greater heterogeneity among medullary thymic epithelial cells than was previously thought2. Here we describe in detail an epithelial subset that is remarkably similar to peripheral tuft cells that are found at mucosal barriers3. Similar to the periphery, thymic tuft cells express the canonical taste transduction pathway and IL-25. However, they are unique in their spatial association with cornified aggregates, ability to present antigens and expression of a broad diversity of taste receptors. Some thymic tuft cells pass through an Aire-expressing stage and depend on a known AIRE-binding partner, HIPK2, for their development. Notably, the taste chemosensory protein TRPM5 is required for their thymic function through which they support the development and polarization of thymic invariant natural killer T cells and act to establish a medullary microenvironment that is enriched in the type 2 cytokine, IL-4. These findings indicate that there is a compartmentalized medullary environment in which differentiation of a minor and highly specialized epithelial subset has a non-redundant role in shaping thymic function.


CCR7 defines a precursor for murine iNKT cells in thymus and periphery.

  • Haiguang Wang‎ et al.
  • eLife‎
  • 2018‎

The precise steps of iNKT subset differentiation in the thymus and periphery have been controversial. We demonstrate here that the small proportion of thymic iNKT and mucosal associated invariant T cells that express CCR7 represent a multi-potent progenitor pool that gives rise to effector subsets within the thymus. Using intra-thymic labeling, we also showed that CCR7+ iNKT cells emigrate from the thymus in a Klf2 dependent manner, and undergo further maturation after reaching the periphery. Ccr7 deficiency impaired differentiation of iNKT effector subsets and localization to the medulla. Parabiosis and intra-thymic transfer showed that thymic NKT1 and NKT17 were resident-they were not derived from and did not contribute to the peripheral pool. Finally, each thymic iNKT effector subset produces distinct factors that influence T cell development. Our findings demonstrate how the thymus is both a source of iNKT progenitors and a unique site of tissue dependent effector cell differentiation.


T cells expressing the transcription factor PLZF regulate the development of memory-like CD8+ T cells.

  • Michael A Weinreich‎ et al.
  • Nature immunology‎
  • 2010‎

Several gene-deficiency models promote the development of innate CD8(+) T cells that have diverse T cell antigen receptors (TCRs) but have a memory phenotype and rapidly produce cytokines. We demonstrate here that similar cells developed in mice deficient in the transcription factor KLF2. However, this was not due to intrinsic deficiency in KLF2 but instead was due to interleukin 4 (IL-4) produced by an expanded population of T cells expressing the transcription factor PLZF. The development of innate CD8(+) T cells in mice deficient in the tyrosine kinase Itk and coactivator CBP was also attributable to this IL-4-dependent mechanism. Finally, we show that the same mechanism drove the differentiation of innate CD8(+) T cells in BALB/c mice. Our findings identify a previously unknown mechanism of regulation of CD8(+) T cells via the production of IL-4 by PLZF(+) T cells.


The timing of TCR alpha expression critically influences T cell development and selection.

  • Troy A Baldwin‎ et al.
  • The Journal of experimental medicine‎
  • 2005‎

Sequential rearrangement of the T cell receptor for antigen (TCR) beta and alpha chains is a hallmark of thymocyte development. This temporal control is lost in TCR transgenics because the alpha chain is expressed prematurely at the CD4- CD8- double negative (DN) stage. To test the importance of this, we expressed the HY alpha chain at the physiological CD4+ CD8+ double positive (DP) stage. The reduced DP and increased DN cellularity typically seen in TCR transgenics was not observed when the alpha chain was expressed at the appropriate stage. Surprisingly, antigen-driven selection events were also altered. In male mice, thymocyte deletion now occurred at the single positive or medullary stage. In addition, no expansion of CD8 alpha alpha intestinal intraepithelial lymphocytes (IELs) was observed, despite the fact that HY transgenics have been used to model IEL development. Collectively, these data establish the importance of proper timing of TCR expression in thymic development and selection and emphasize the need to use models that most accurately reflect the physiologic process.


Basal immunoglobulin signaling actively maintains developmental stage in immature B cells.

  • Lina E Tze‎ et al.
  • PLoS biology‎
  • 2005‎

In developing B lymphocytes, a successful V(D)J heavy chain (HC) immunoglobulin (Ig) rearrangement establishes HC allelic exclusion and signals pro-B cells to advance in development to the pre-B stage. A subsequent functional light chain (LC) rearrangement then results in the surface expression of IgM at the immature B cell stage. Here we show that interruption of basal IgM signaling in immature B cells, either by the inducible deletion of surface Ig via Cre-mediated excision or by incubating cells with the tyrosine kinase inhibitor herbimycin A or the phosphatidylinositol 3-kinase inhibitor wortmannin, led to a striking "back-differentiation" of cells to an earlier stage in B cell development, characterized by the expression of pro-B cell genes. Cells undergoing this reversal in development also showed evidence of new LC gene rearrangements, suggesting an important role for basal Ig signaling in the maintenance of LC allelic exclusion. These studies identify a previously unappreciated level of plasticity in the B cell developmental program, and have important implications for our understanding of central tolerance mechanisms.


Intestinal CD8αα IELs derived from two distinct thymic precursors have staggered ontogeny.

  • Roland Ruscher‎ et al.
  • The Journal of experimental medicine‎
  • 2020‎

CD8αα intraepithelial lymphocytes (IELs) are abundant T cells that protect the gut epithelium. Their thymic precursors (IELps) include PD-1+ type A and Tbet+ type B populations, which differ in their antigen-receptor specificities. To better understand CD8αα IEL ontogeny, we performed "time-stamp" fate mapping experiments and observed that it seeds the intestine predominantly during a narrow time window in early life. Adoptively transferred IELps parked better in the intestines of young mice than in adults. In young mice, both type A and type B IELps had an S1PR1+ and α4β7+ emigration- and mucosal-homing competent phenotype, while this was restricted to type A IELps in adults. Only CD8αα IELs established in early life were enriched in cells bearing type B IELp TCR usage. Together, our results suggest that the young intestine facilitates CD8αα IEL establishment and that early IELs are distinct from IELs established after this initial wave. These data provide novel insight into the ontogeny of CD8αα IELs.


Epithelial STAT6 O-GlcNAcylation drives a concerted anti-helminth alarmin response dependent on tuft cell hyperplasia and Gasdermin C.

  • Ming Zhao‎ et al.
  • Immunity‎
  • 2022‎

The epithelium is an integral component of mucosal barrier and host immunity. Following helminth infection, the intestinal epithelial cells secrete "alarmin" cytokines, such as interleukin-25 (IL-25) and IL-33, to initiate the type 2 immune responses for helminth expulsion and tolerance. However, it is unknown how helminth infection and the resulting cytokine milieu drive epithelial remodeling and orchestrate alarmin secretion. Here, we report that epithelial O-linked N-Acetylglucosamine (O-GlcNAc) protein modification was induced upon helminth infections. By modifying and activating the transcription factor STAT6, O-GlcNAc transferase promoted the transcription of lineage-defining Pou2f3 in tuft cell differentiation and IL-25 production. Meanwhile, STAT6 O-GlcNAcylation activated the expression of Gsdmc family genes. The membrane pore formed by GSDMC facilitated the unconventional secretion of IL-33. GSDMC-mediated IL-33 secretion was indispensable for effective anti-helminth immunity and contributed to induced intestinal inflammation. Protein O-GlcNAcylation can be harnessed for future treatment of type 2 inflammation-associated human diseases.


Bi-Allelic TCRα or β Recombination Enhances T Cell Development but Is Dispensable for Antigen Responses and Experimental Autoimmune Encephalomyelitis.

  • Nathaniel J Schuldt‎ et al.
  • PloS one‎
  • 2015‎

Dual TCRα-expressing T cells outnumber dual TCRβ-expressing cells by ~10:1. As a result, efforts to understand how dual TCR T cells impact immunity have focused on dual TCRα expression; dual TCRβ expression remains understudied. We recently demonstrated, however, that dual TCRβ expression accelerated disease in a TCR transgenic model of autoimmune arthritis through enhanced positive selection efficiency, indicating that dual TCRβ expression, though rare, can impact thymic selection. Here we generated mice hemizygous for TCRα, TCRβ, or both on the C57BL/6 background to investigate the impact bi-allelic TCR chain recombination has on T cell development, repertoire diversity, and autoimmunity. Lack of bi-allelic TCRα or TCRβ recombination reduced αβ thymocyte development efficiency, and the absence of bi-allelic TCRβ recombination promoted γδ T cell development. However, we observed no differences in the numbers of naïve and expanded antigen-specific T cells between TCRα+/-β+/- and wildtype mice, and TCR repertoire analysis revealed only subtle differences in Vβ gene usage. Finally, the absence of dual TCR T cells did not impact induced experimental autoimmune encephalomyelitis pathogenesis. Thus, despite more stringent allelic exclusion of TCRβ relative to TCRα, bi-allelic TCRβ expression can measurably impact thymocyte development and is necessary for maintaining normal αβ/γδ T cell proportions.


Engagement of the costimulatory molecule ICOS in tissues promotes establishment of CD8+ tissue-resident memory T cells.

  • Changwei Peng‎ et al.
  • Immunity‎
  • 2022‎

Elevated gene expression of the costimulatory receptor Icos is a hallmark of CD8+ tissue-resident memory (Trm) T cells. Here, we examined the contribution of ICOS in Trm cell differentiation. Upon transfer into WT mice, Icos-/- CD8+ T cells exhibited defective Trm generation but produced recirculating memory populations normally. ICOS deficiency or ICOS-L blockade compromised establishment of CD8+ Trm cells but not their maintenance. ICOS ligation during CD8+ T cell priming did not determine Trm induction; rather, effector CD8+ T cells showed reduced Trm differentiation after seeding into Icosl-/- mice. IcosYF/YF CD8+ T cells were compromised in Trm generation, indicating a critical role for PI3K signaling. Modest transcriptional changes in the few Icos-/- Trm cells suggest that ICOS-PI3K signaling primarily enhances the efficiency of CD8+ T cell tissue residency. Thus, local ICOS signaling promotes production of Trm cells, providing insight into the contribution of costimulatory signals in the generation of tissue-resident populations.


From pre-DP, post-DP, SP4, and SP8 Thymocyte Cell Counts to a Dynamical Model of Cortical and Medullary Selection.

  • Maria Sawicka‎ et al.
  • Frontiers in immunology‎
  • 2014‎

Cells of the mature αβ T cell repertoire arise from the development in the thymus of bone marrow precursors (thymocytes). αβ T cell maturation is characterized by the expression of thousands of copies of identical αβ T cell receptors and the CD4 and/or CD8 co-receptors on the surface of thymocytes. The maturation stages of a thymocyte are: (1) double negative (DN) (TCR(-), CD4(-) and CD8(-)), (2) double positive (DP) (TCR(+), CD4(+) and CD8(+)), and (3) single positive (SP) (TCR(+), CD4(+) or CD8(+)). Thymic antigen presenting cells provide the appropriate micro-architecture for the maturation of thymocytes, which "sense" the signaling environment via their randomly generated TCRs. Thymic development is characterized by (i) an extremely low success rate, and (ii) the selection of a functional and self-tolerant T cell repertoire. In this paper, we combine recent experimental data and mathematical modeling to study the selection events that take place in the thymus after the DN stage. The stable steady state of the model for the pre-DP, post-DP, and SP populations is identified with the experimentally measured cell counts from 5.5- to 17-week-old mice. We make use of residence times in the cortex and the medulla for the different populations, as well as recently reported asymmetric death rates for CD4 and CD8 SP thymocytes. We estimate that 65.8% of pre-DP thymocytes undergo death by neglect. In the post-DP compartment, 91.7% undergo death by negative selection, 4.7% become CD4 SP, and 3.6% become CD8 SP. Death by negative selection in the medulla removes 8.6% of CD4 SP and 32.1% of CD8 SP thymocytes. Approximately 46.3% of CD4 SP and 27% of CD8 SP thymocytes divide before dying or exiting the thymus.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: