Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 80 papers

Combinatorial Pharmacophore-Based 3D-QSAR Analysis and Virtual Screening of FGFR1 Inhibitors.

  • Nannan Zhou‎ et al.
  • International journal of molecular sciences‎
  • 2015‎

The fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) signaling pathway plays crucial roles in cell proliferation, angiogenesis, migration, and survival. Aberration in FGFRs correlates with several malignancies and disorders. FGFRs have proved to be attractive targets for therapeutic intervention in cancer, and it is of high interest to find FGFR inhibitors with novel scaffolds. In this study, a combinatorial three-dimensional quantitative structure-activity relationship (3D-QSAR) model was developed based on previously reported FGFR1 inhibitors with diverse structural skeletons. This model was evaluated for its prediction performance on a diverse test set containing 232 FGFR inhibitors, and it yielded a SD value of 0.75 pIC50 units from measured inhibition affinities and a Pearson's correlation coefficient R2 of 0.53. This result suggests that the combinatorial 3D-QSAR model could be used to search for new FGFR1 hit structures and predict their potential activity. To further evaluate the performance of the model, a decoy set validation was used to measure the efficiency of the model by calculating EF (enrichment factor). Based on the combinatorial pharmacophore model, a virtual screening against SPECS database was performed. Nineteen novel active compounds were successfully identified, which provide new chemical starting points for further structural optimization of FGFR1 inhibitors.


Lethality of PAK3 and SGK2 shRNAs to human papillomavirus positive cervical cancer cells is independent of PAK3 and SGK2 knockdown.

  • Nannan Zhou‎ et al.
  • PloS one‎
  • 2015‎

The p21-activated kinase 3 (PAK3) and the serum and glucocorticoid-induced kinase 2 (SGK2) have been previously proposed as essential kinases for human papillomavirus positive (HPV+) cervical cancer cell survival. This was established using a shRNA knockdown approach. To validate PAK3 and SGK2 as potential targets for HPV+ cervical cancer therapy, the relationship between shRNA-induced phenotypes in HPV+ cervical cancer cells and PAK3 or SGK2 knockdown was carefully examined. We observed that the phenotypes of HPV+ cervical cancer cells induced by various PAK3 and SGK2 shRNAs could not be rescued by complement expression of respective cDNA constructs. A knockdown-deficient PAK3 shRNA with a single mismatch was sufficient to inhibit HeLa cell growth to a similar extent as wild-type PAK3 shRNA. The HPV+ cervical cancer cells were also susceptible to several non-human target shRNAs. The discrepancy between PAK3 and SGK2 shRNA-induced apoptosis and gene expression knockdown, as well as cell death stimulation, suggested that these shRNAs killed HeLa cells through different pathways that may not be target-specific. These data demonstrated that HPV+ cervical cancer cell death was not associated with RNAi-induced PAK3 and SGK2 knockdown but likely through off-target effects.


NS5A Sequence Heterogeneity and Mechanisms of Daclatasvir Resistance in Hepatitis C Virus Genotype 4 Infection.

  • Nannan Zhou‎ et al.
  • The Journal of infectious diseases‎
  • 2016‎

Daclatasvir is an NS5A inhibitor approved for treatment of infection due to hepatitis C virus (HCV) genotypes (GTs) 1-4. To support daclatasvir use in HCV genotype 4 infection, we examined a diverse genotype 4-infected population for HCV genotype 4 subtype prevalence, NS5A polymorphisms at residues associated with daclatasvir resistance (positions 28, 30, 31, or 93), and their effects on daclatasvir activity in vitro and clinically.


Increased sensitivity of HIV variants selected by attachment inhibitors to broadly neutralizing antibodies.

  • Nannan Zhou‎ et al.
  • Virology‎
  • 2010‎

Treatment with HIV attachment inhibitors (AIs) can select for escape mutants throughout the viral envelope. We report on three such mutations: F423Y (gp120 CD4 binding pocket) and I595F and K655E (gp41 ectodomain). Each displayed decreased sensitivity to the AI BMS-488043 and earlier generation AIs, along with increased sensitivity to the broadly neutralizing antibodies 2F5 and 4E10, without affecting the rate of viral entry or sensitivity to the entry inhibitors AMD-3100 and Enfuvirtide. We also observed that I595F did not substantially increase envelope sensitivity to HIV-infected patient sera. Based on these observations, we propose that although F423Y, I595F and K655E may all affect the presentation of the 2F5 and 4E10 epitopes, natural immune mimicry is rare only for the I595F effect. Thus, it seems that in addition to restricting AI resistance development, incorporation of I595F into an appropriate vehicle could elicit a novel antiviral response to improve vaccine efficacy.


miR-541 suppresses proliferation and invasion of squamous cell lung carcinoma cell lines via directly targeting high-mobility group AT-hook 2.

  • Li Xu‎ et al.
  • Cancer medicine‎
  • 2018‎

An increasing number of studies have demonstrated that micro-ribonucleic acids (miRNAs) are important tumor suppressors during carcinogenesis. However, the function of miRNA-541 (miR-541) in malignancies, especially lung cancer, has not been widely reported. In this study, miR-541 expression was significantly decreased in squamous cell lung carcinoma (SCLC) cancerous tissue and SCLC cell lines. To analyze miR-541 function in SCLC, we overexpressed miR-541 in SCLC cell lines (SK-MES-1 and H226). According to the CCK8, wound scratch, and transwell invasion assay results, miR-541 overexpression significantly inhibited SCLC cell proliferation, migration, and invasion ability. Next, using RT-PCR, Western blotting, immunocytochemistry, and luciferase assays, HMGA2 was identified, for the first time, as a direct regulatory target of miR-541 in SK-MES-1 and H226 cells. Furthermore, upregulating HMGA2 expression significantly alleviated the suppressive effects of miR-541 on SK-MES-1 and H226 cell proliferation, migration, and invasion. In summary, our study revealed that miR-541 inhibited SCLC proliferation and invasion by directly targeting HMGA2.


Chloroquine modulates antitumor immune response by resetting tumor-associated macrophages toward M1 phenotype.

  • Degao Chen‎ et al.
  • Nature communications‎
  • 2018‎

Resetting tumor-associated macrophages (TAMs) is a promising strategy to ameliorate the immunosuppressive tumor microenvironment and improve innate and adaptive antitumor immunity. Here we show that chloroquine (CQ), a proven anti-malarial drug, can function as an antitumor immune modulator that switches TAMs from M2 to tumor-killing M1 phenotype. Mechanistically, CQ increases macrophage lysosomal pH, causing Ca2+ release via the lysosomal Ca2+ channel mucolipin-1 (Mcoln1), which induces the activation of p38 and NF-κB, thus polarizing TAMs to M1 phenotype. In parallel, the released Ca2+ activates transcription factor EB (TFEB), which reprograms the metabolism of TAMs from oxidative phosphorylation to glycolysis. As a result, CQ-reset macrophages ameliorate tumor immune microenvironment by decreasing immunosuppressive infiltration of myeloid-derived suppressor cells and Treg cells, thus enhancing antitumor T-cell immunity. These data illuminate a previously unrecognized antitumor mechanism of CQ, suggesting a potential new macrophage-based tumor immunotherapeutic modality.


Toll-like Receptor 9 Promotes Initiation of Gastric Tumorigenesis by Augmenting Inflammation and Cellular Proliferation.

  • Ke Tang‎ et al.
  • Cellular and molecular gastroenterology and hepatology‎
  • 2022‎

Gastric cancer (GC) is strongly linked with chronic gastritis after Helicobacter pylori infection. Toll-like receptors (TLRs) are key innate immune pathogenic sensors that mediate chronic inflammatory and oncogenic responses. Here, we investigated the role of TLR9 in the pathogenesis of GC, including Helicobacter infection.


Glycogen metabolism regulates macrophage-mediated acute inflammatory responses.

  • Jingwei Ma‎ et al.
  • Nature communications‎
  • 2020‎

Our current understanding of how sugar metabolism affects inflammatory pathways in macrophages is incomplete. Here, we show that glycogen metabolism is an important event that controls macrophage-mediated inflammatory responses. IFN-γ/LPS treatment stimulates macrophages to synthesize glycogen, which is then channeled through glycogenolysis to generate G6P and further through the pentose phosphate pathway to yield abundant NADPH, ensuring high levels of reduced glutathione for inflammatory macrophage survival. Meanwhile, glycogen metabolism also increases UDPG levels and the receptor P2Y14 in macrophages. The UDPG/P2Y14 signaling pathway not only upregulates the expression of STAT1 via activating RARβ but also promotes STAT1 phosphorylation by downregulating phosphatase TC45. Blockade of this glycogen metabolic pathway disrupts acute inflammatory responses in multiple mouse models. Glycogen metabolism also regulates inflammatory responses in patients with sepsis. These findings show that glycogen metabolism in macrophages is an important regulator and indicate strategies that might be used to treat acute inflammatory diseases.


Spatial molecular anatomy of germ layers in the gastrulating cynomolgus monkey embryo.

  • Guizhong Cui‎ et al.
  • Cell reports‎
  • 2022‎

During mammalian embryogenesis, spatial regulation of gene expression and cell signaling are functionally coupled with lineage specification, patterning of tissue progenitors, and germ layer morphogenesis. While the mouse model has been instrumental for understanding mammalian development, comparatively little is known about human and non-human primate gastrulation due to the restriction of both technical and ethical issues. Here, we present a spatial and temporal survey of the molecular dynamics of cell types populating the non-human primate embryos during gastrulation. We reconstructed three-dimensional digital models from serial sections of cynomolgus monkey (Macaca fascicularis) gastrulating embryos at 1-day temporal resolution from E17 to E21. Spatial transcriptomics identifies gene expression profiles unique to the germ layers. Cross-species comparison reveals a developmental coordinate of germ layer segregation between mouse and primates, and species-specific transcription programs during gastrulation. These findings offer insights into evolutionarily conserved and divergent processes during mammalian gastrulation.


Identification of the dietary supplement capsaicin as an inhibitor of Lassa virus entry.

  • Ke Tang‎ et al.
  • Acta pharmaceutica Sinica. B‎
  • 2020‎

The limited treatment options for the increasing occurrence of Lassa hemorrhagic fever in West Africa poses an urgent need for the discovery and development of novel therapeutics. Dietary supplements, especially natural products that are edible and safe for human use, are a good source of drug discovery with potential for uncovering novel applications. In this study, we tested 40 natural products of dietary supplements and identified capsaicin, a common dietary supplement abundant in chili peppers, as an inhibitor of Lassa virus (LASV) entry with EC50 of 6.9-10.0 μmol/L using an HIV based pseudovirus platform. Capsaicin inhibits the entry of five LASV strains but not against the Old World arenavirus lymphocytic choriomeningitis virus (LCMV), showing a preferential activity against LASV. Capsaicin inhibits LASV entry by blocking the pH dependent viral fusion through affecting the stable signal peptide (SSP)-GP2 transmembrane (GP2TM) region of the LASV surface glycoprotein. Mutational study revealed the key residues Ala25, Val431, Phe434 and Val435 in SSP-GP2TM region in capsaicin's antiviral effect. This study for the first time reveals a direct acting antiviral effect of capsaicin against the hemorrhagic fever causing LASV, providing detailed interaction hot spots in the unique SSP-GP2TM interface of LASV glycoprotein that is crucial in fusion inhibition, and offering a new strategy in discovering and developing antivirals from natural products that are safe for human use.


Chemosensory Characteristics of Brandies from Chinese Core Production Area and First Insights into Their Differences from Cognac.

  • Yue Ma‎ et al.
  • Foods (Basel, Switzerland)‎
  • 2023‎

This work aimed to compare the aroma characteristics of representative brandies with different grades from Yantai (one of the Chinese core production areas) and Cognac and to establish relationships between sensory descriptors and chemical composition. Descriptive analysis was performed with a trained panel to obtain the sensory profiles. Forty-three aroma-active compounds were quantified by four different methodologies. A prediction model on the basis of partial least squares analysis was performed to identify candidate compounds that were unique to a certain group of brandies. The result showed that brandies from Yantai could be distinguished from Cognac brandies on the basis of spicy, dried fruit, floral, and fruity-like aromas, which were associated with an aromatic balance between concentrations of a set of compounds such as 5-methylfurfural, γ-nonalactone, and γ-dodecalactone. Meanwhile, brandy with different grades could be distinguished on the basis of compounds derived mostly during the aging process.


Cell softness renders cytotoxic T lymphocytes and T leukemic cells resistant to perforin-mediated killing.

  • Yabo Zhou‎ et al.
  • Nature communications‎
  • 2024‎

Mechanical force contributes to perforin pore formation at immune synapses, thus facilitating the cytotoxic T lymphocytes (CTL)-mediated killing of tumor cells in a unidirectional fashion. How such mechanical cues affect CTL evasion of perforin-mediated autolysis remains unclear. Here we show that activated CTLs use their softness to evade perforin-mediated autolysis, which, however, is shared by T leukemic cells to evade CTL killing. Downregulation of filamin A is identified to induce softness via ZAP70-mediated YAP Y357 phosphorylation and activation. Despite the requirements of YAP in both cell types for softness induction, CTLs are more resistant to YAP inhibitors than malignant T cells, potentially due to the higher expression of the drug-resistant transporter, MDR1, in CTLs. As a result, moderate inhibition of YAP stiffens malignant T cells but spares CTLs, thus allowing CTLs to cytolyze malignant cells without autolysis. Our findings thus hint a mechanical force-based immunotherapeutic strategy against T cell leukemia.


Soft fibrin gels promote selection and growth of tumorigenic cells.

  • Jing Liu‎ et al.
  • Nature materials‎
  • 2012‎

The identification of stem-cell-like cancer cells through conventional methods that depend on stem cell markers is often unreliable. We developed a mechanical method for selecting tumorigenic cells by culturing single cancer cells in fibrin matrices of ~100 Pa in stiffness. When cultured within these gels, primary human cancer cells or single cancer cells from mouse or human cancer cell lines grew within a few days into individual round colonies that resembled embryonic stem cell colonies. Subcutaneous or intravenous injection of 10 or 100 fibrin-cultured cells in syngeneic or severe combined immunodeficiency mice led to the formation of solid tumours at the site of injection or at the distant lung organ much more efficiently than control cancer cells selected using conventional surface marker methods or cultured on conventional rigid dishes or on soft gels. Remarkably, as few as ten such cells were able to survive and form tumours in the lungs of wild-type non-syngeneic mice.


Reduced Graphene Oxide/Carbon Nanotube Composites as Electrochemical Energy Storage Electrode Applications.

  • Wenyao Yang‎ et al.
  • Nanoscale research letters‎
  • 2018‎

We demonstrate an electrochemical reduction method to reduce graphene oxide (GO) to electrochemically reduced graphene oxide (ERGO) with the assistance of carbon nanotubes (CNTs). The faster and more efficient reduction of GO can be achieved after proper addition of CNTs into GO during the reduction process. This nanotube/nanosheet composite was deposited on electrode as active material for electrochemical energy storage applications. It has been found that the specific capacitance of the composite film was strongly affected by the mass ratio of GO/CNTs and the scanning ratio of cyclic voltammetry. The obtained ERGO/CNT composite electrode exhibited a 279.4 F/g-specific capacitance and showed good cycle rate performance with the evidence that the specific capacitance maintained above 90% after 6000 cycles. The synergistic effect between ERGO and CNTs as well as crossing over of CNTs into ERGO is attributed to the high electrochemical performance of composite electrode.


Mangiferin Alleviates Renal Interstitial Fibrosis in Streptozotocin-Induced Diabetic Mice through Regulating the PTEN/PI3K/Akt Signaling Pathway.

  • Yanyan Song‎ et al.
  • Journal of diabetes research‎
  • 2020‎

Renal interstitial fibrosis is considered to be the typical manifestation of diabetic nephropathy (DN). Mangiferin has shown positive effect on the prevention or treatment of diabetes and its complications. The aim of this study was to explore the inhibitive effect and mechanism of mangiferin on renal interstitial fibrosis in diabetic mice. Streptozotocin- (STZ-) induced diabetic mice were treated with mangiferin (15, 30, and 60 mg/kg/d) for 4 weeks. The morphology of kidneys was observed by Masson's trichrome staining, and the biochemical parameters (fasting blood glucose (FBG), triglyceride (TG), total cholesterol (TC), blood urea nitrogen (BUN), serum creatinine (SCr), and urine protein) were determined by kits. In addition, the levels of inflammatory cytokines (tumor necrosis factor-α (TNF-α), interleukin- (IL-) 6, and IL-1β), antioxidant enzymes (SOD, CAT, and GSH-Px), MDA, and ROS were assessed. Furthermore, the expressions of fibronectin (FN), collagen I (Col I), and α-SMA were measured by immunohistochemistry. Regulations of TGF-β1 and the PTEN/PI3K/Akt pathway were detected by Western blotting. Treatment with mangiferin significantly ameliorated renal dysfunction in diabetic mice, as evidenced by the increase in body weight and decreases in FBG, TG, TC, BUN, SCr, urine protein, and the kidney to body weight ratio (KW/BW). Furthermore, mangiferin treatment prevented renal interstitial fibrosis evidenced by decreases in the positive expression of FN, Col I, and α-SMA, in comparison with morphological changes in the renal tissue. Meanwhile, mangiferin increased antioxidant enzymes, reduced the TNF-α, IL-6, and IL-1β, as well as MDA and ROS. Additionally, mangiferin administration also downregulated TGF-β1, upregulated PTEN, and decreased the phosphorylation of both PI3K and Akt. These findings demonstrate that mangiferin may reduce inflammation and oxidative stress in DN, thereby inhibiting the renal interstitial fibrosis by reducing the TGF-β1-mediated elevation of Col I, FN, and α-SMA through the PTEN/PI3K/Akt pathway.


A dataset on odor intensity and odor pleasantness of 222 binary mixtures of 72 key food odorants rated by a sensory panel of 30 trained assessors.

  • Yue Ma‎ et al.
  • Data in brief‎
  • 2021‎

This paper describes data collected on a set of 222 binary mixtures, based on a set of 72 odorants chiefly found in food, rated by 30 selected and trained assessors for odor intensity and pleasantness. The data included odor intensity (IAB) and pleasantness (PAB) of the mixtures, the intensity (IA, IB) and the pleasantness (PA, PB) of the two components. Moreover, the intensity (IAmix, IBmix) of the two components' odor perceived within the mixture are included. The quality of the dataset was evaluated by checking subjects' performance and by testing repeatability using the 24 duplicated trials for each attribute. This set of experimental data would be especially valuable to investigate theories of odor mixture perception in human and to test new models to predict odor perception of odor mixtures.


Transcriptional network orchestrating regional patterning of cortical progenitors.

  • Athéna R Ypsilanti‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2021‎

We uncovered a transcription factor (TF) network that regulates cortical regional patterning in radial glial stem cells. Screening the expression of hundreds of TFs in the developing mouse cortex identified 38 TFs that are expressed in gradients in the ventricular zone (VZ). We tested whether their cortical expression was altered in mutant mice with known patterning defects (Emx2, Nr2f1, and Pax6), which enabled us to define a cortical regionalization TF network (CRTFN). To identify genomic programming underlying this network, we performed TF ChIP-seq and chromatin-looping conformation to identify enhancer-gene interactions. To map enhancers involved in regional patterning of cortical progenitors, we performed assays for epigenomic marks and DNA accessibility in VZ cells purified from wild-type and patterning mutant mice. This integrated approach has identified a CRTFN and VZ enhancers involved in cortical regional patterning in the mouse.


Identification of Nifurtimox and Chrysin as Anti-Influenza Virus Agents by Clinical Transcriptome Signature Reversion.

  • Yijing Xin‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

The rapid development in the field of transcriptomics provides remarkable biomedical insights for drug discovery. In this study, a transcriptome signature reversal approach was conducted to identify the agents against influenza A virus (IAV) infection through dissecting gene expression changes in response to disease or compounds' perturbations. Two compounds, nifurtimox and chrysin, were identified by a modified Kolmogorov-Smirnov test statistic based on the transcriptional signatures from 81 IAV-infected patients and the gene expression profiles of 1309 compounds. Their activities were verified in vitro with half maximal effective concentrations (EC50s) from 9.1 to 19.1 μM against H1N1 or H3N2. It also suggested that the two compounds interfered with multiple sessions in IAV infection by reversing the expression of 28 IAV informative genes. Through network-based analysis of the 28 reversed IAV informative genes, a strong synergistic effect of the two compounds was revealed, which was confirmed in vitro. By using the transcriptome signature reversion (TSR) on clinical datasets, this study provides an efficient scheme for the discovery of drugs targeting multiple host factors regarding clinical signs and symptoms, which may also confer an opportunity for decelerating drug-resistant variant emergence.


Cell softness regulates tumorigenicity and stemness of cancer cells.

  • Jiadi Lv‎ et al.
  • The EMBO journal‎
  • 2021‎

Identifying and sorting highly tumorigenic and metastatic tumor cells from a heterogeneous cell population is a daunting challenge. Here, we show that microfluidic devices can be used to sort marker-based heterogeneous cancer stem cells (CSC) into mechanically stiff and soft subpopulations. The isolated soft tumor cells (< 400 Pa) but not the stiff ones (> 700 Pa) can form a tumor in immunocompetent mice with 100 cells per inoculation. Notably, only the soft, but not the stiff cells, isolated from CD133+ , ALDH+ , or side population CSCs, are able to form a tumor with only 100 cells in NOD-SCID or immunocompetent mice. The Wnt signaling protein BCL9L is upregulated in soft tumor cells and regulates their stemness and tumorigenicity. Clinically, BCL9L expression is correlated with a worse prognosis. Our findings suggest that the intrinsic softness is a unique marker of highly tumorigenic and metastatic tumor cells.


Contribution of Connexin Hemichannels to the Pathogenesis of Acute Lung Injury.

  • Shuaiwei Wang‎ et al.
  • Mediators of inflammation‎
  • 2020‎

Connexin (Cx) family members form hemichannels (HCs) and gap junctions (GJs). Biological functions of Cx HCs have not been adequately characterized due to the inability to selectively target HCs or GJs. Recently, we developed a 6-mer peptide mimetic (P5) of the first extracellular loop of Cx43 and showed that it can block the permeability of HCs but not GJs formed by Cx43. In this study, we further characterized the HC blocking property of P5 and investigated the role of Cx HCs in acute lung injury (ALI). We found that P5 administration decreased HC permeability, in pulmonary microvascular endothelial cells, HepG2 cells, and even Cx43-deficient astrocytes, which express different sets of Cxs, suggesting that P5 is a broad spectrum Cx HC blocker. In addition, P5 reduced HC permeability of alveolar cells in vivo. Moreover, P5 decreased endotoxin-induced release, by vascular endothelial cells in vitro, of high mobility group box protein 1 (HMGB1), a critical mediator of acute lung injury (ALI), and reduced HMGB1 accumulation in bronchoalveolar lavage fluid (BALF) of mice subjected to intratracheal endotoxin instillation. Furthermore, P5 administration resulted in a significant decrease in the concentrations of ALT, AST, and LDH in the BALF, the accumulation of leukocytes in alveoli, and the mortality rate of mice subjected to ALI. Wright-Giemsa staining showed that P5 caused similar reductions of both neutrophils and monocytes in BALF of ALI mice. Together, these results suggest that Cx HCs mediate HMGB1 release, augment leukocyte recruitment, and contribute to ALI pathology.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: