Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 29 papers

Developmental regulation of notochord-derived repulsion for dorsal root ganglion axons.

  • Tomoyuki Masuda‎ et al.
  • Molecular and cellular neurosciences‎
  • 2004‎

During the initial stages of development, the notochord provides repulsive signals for dorsal root ganglion (DRG) axons via semaphorin 3A/neuropilin-1, axonin-1/SC2, and other unknown repulsive molecules. The notochord is known to produce aggrecan, one of the chondroitin sulfate proteoglycans (CSPGs). We report here that adding aggrecan to the culture medium cannot only induce DRG growth cone collapse, but also inhibit DRG axonal growth. Using cocultures composed of tissues derived from chick embryos or neuropilin-1-deficient mice treated with chondroitinase ABC, we show the direct evidence that CSPGs are involved in notochord-derived repulsion for DRG axons. At later developmental stages, CSPGs are involved in perinotochordal sheath-derived axon repulsion, but not in notochord core-derived repulsion. We further demonstrate that TAG-1/axonin-1/SC2 is not involved in mediating repulsive activities by CSPGs, but is required for notochord core-derived axon repulsion. Thus, notochord-derived multiple axon repulsions act in a spatiotemporal-specific manner to shape the initial trajectories of DRG axons.


Neural recognition molecules CHL1 and NB-3 regulate apical dendrite orientation in the neocortex via PTP alpha.

  • Haihong Ye‎ et al.
  • The EMBO journal‎
  • 2008‎

Apical dendrites of pyramidal neurons in the neocortex have a stereotypic orientation that is important for neuronal function. Neural recognition molecule Close Homolog of L1 (CHL1) has been shown to regulate oriented growth of apical dendrites in the mouse caudal cortex. Here we show that CHL1 directly associates with NB-3, a member of the F3/contactin family of neural recognition molecules, and enhances its cell surface expression. Similar to CHL1, NB-3 exhibits high-caudal to low-rostral expression in the deep layer neurons of the neocortex. NB-3-deficient mice show abnormal apical dendrite projections of deep layer pyramidal neurons in the visual cortex. Both CHL1 and NB-3 interact with protein tyrosine phosphatase alpha (PTPalpha) and regulate its activity. Moreover, deep layer pyramidal neurons of PTPalpha-deficient mice develop misoriented, even inverted, apical dendrites. We propose a signaling complex in which PTPalpha mediates CHL1 and NB-3-regulated apical dendrite projection in the developing caudal cortex.


Gamma-H2AX upregulation caused by Wip1 deficiency increases depression-related cellular senescence in hippocampus.

  • Zhi-Yong He‎ et al.
  • Scientific reports‎
  • 2016‎

The PP2C family member Wild-type p53-induced phosphatase 1 (Wip1) critically regulates DNA damage response (DDR) under stressful situations. In the present study, we investigated whether Wip1 expression was involved in the regulation of DDR-induced and depression-related cellular senescence in mouse hippocampus. We found that Wip1 gene knockout (KO) mice showed aberrant elevation of hippocampal cellular senescence and of γ-H2AX activity, which is known as a biomarker of DDR and cellular senescence, indicating that the lack of Wip1-mediated γ-H2AX dephosphorylation facilitates cellular senescence in hippocampus. Administration of the antidepressant fluoxetine had no significant effects on the increased depression-like behaviors, enriched cellular senescence, and aberrantly upregulated hippocampal γ-H2AX activity in Wip1 KO mice. After wildtype C57BL/6 mice were exposed to the procedure of chronic unpredictable mild stress (CUMS), cellular senescence and γ-H2AX activity in hippocampus were also elevated, accompanied by the suppression of Wip1 expression in hippocampus when compared to the control group without CUMS experience. These CUMS-induced symptoms were effectively prevented following fluoxetine administration in wildtype C57BL/6 mice, with the normalization of depression-like behaviors. Our data demonstrate that Wip1-mediated γ-H2AX dephosphorylation may play an important role in the occurrence of depression-related cellular senescence.


COX5A Plays a Vital Role in Memory Impairment Associated With Brain Aging via the BDNF/ERK1/2 Signaling Pathway.

  • Yan-Bin Xiyang‎ et al.
  • Frontiers in aging neuroscience‎
  • 2020‎

Cytochrome c oxidase subunit Va (COX5A) is involved in maintaining normal mitochondrial function. However, little is known on the role of COX5A in the development and progress of Alzheimer's disease (Martinez-Losa et al., 2018). In this study, we established and characterized the genomic profiles of genes expressed in the hippocampus of Senescence-Accelerated Mouse-prone 8 (SAMP8) mice, and revealed differential expression of COX5A among 12-month-aged SAMP8 mice and 2-month-aged SAMP8 mice. Newly established transgenic mice with systemic COX5A overexpression (51% increase) resulted in the improvement of spatial recognition memory and hippocampal synaptic plasticity, recovery of hippocampal CA1 dendrites, and activation of the BDNF/ERK1/2 signaling pathway in vivo. Moreover, mice with both COX5A overexpression and BDNF knockdown showed a poor recovery in spatial recognition memory as well as a decrease in spine density and branching of dendrites in CA1, when compared to mice that only overexpressed COX5A. In vitro studies supported that COX5A affected neuronal growth via BDNF. In summary, this study was the first to show that COX5A in the hippocampus plays a vital role in aging-related cognitive deterioration via BDNF/ERK1/2 regulation, and suggested that COX5A may be a potential target for anti-senescence drugs.


Deficiency of neural recognition molecule NB-2 affects the development of glutamatergic auditory pathways from the ventral cochlear nucleus to the superior olivary complex in mouse.

  • Manabu Toyoshima‎ et al.
  • Developmental biology‎
  • 2009‎

Neural recognition molecule NB-2/contactin 5 is expressed transiently during the first postnatal week in glutamatergic neurons of the central auditory system. Here, we investigated the effect of NB-2 deficiency on the auditory brainstem in mouse. While almost all principal neurons are wrapped with the calyces of Held in the medial nucleus of the trapezoid body (MNTB) in wild type, 8% of principal neurons in NB-2 knockout (KO) mice lack the calyces of Held at postnatal day (P) 6. At P10 and P15, apoptotic principal neurons were detected in NB-2 KO mice, but not in wild type. Apoptotic cells were also increased in the ventral cochlear nucleus (VCN) of NB-2 KO mice, which contains bushy neurons projecting to the MNTB and the lateral superior olive (LSO). At the age of 1 month, the number of principal neurons in the MNTB and of glutamatergic synapses in the LSO was reduced in NB-2 KO mice. Finally, interpeak latencies for auditory brainstem response waves II-III and III-IV were significantly increased in NB-2 KO mice. Together, these findings suggest that NB-2 deficiency causes a deficit in synapse formation and then induces apoptosis in MNTB and VCN neurons, affecting auditory brainstem function.


Contactin 4, -5 and -6 differentially regulate neuritogenesis while they display identical PTPRG binding sites.

  • Oriane Mercati‎ et al.
  • Biology open‎
  • 2013‎

The neural cell-adhesion molecules contactin 4, contactin 5 and contactin 6 are involved in brain development, and disruptions in contactin genes may confer increased risk for autism spectrum disorders (ASD). We describe a co-culture of rat cortical neurons and HEK293 cells overexpressing and delivering the secreted forms of rat contactin 4-6. We quantified their effects on the length and branching of neurites. Contactin 4-6 effects were different depending on the contactin member and duration of co-culture. At 4 days in culture, contactin 4 and -6 increased the length of neurites, while contactin 5 increased the number of roots. Up to 8 days in culture, contactin 6 progressively increased the length of neurites while contactin 5 was more efficient on neurite branching. We studied the molecular sites of interaction between human contactin 4, -5 or -6 and the human Protein Tyrosine Phosphatase Receptor Gamma (PTPRG), a contactin partner, by modeling their 3D structures. As compared to contactin 4, we observed differences in the Ig2 and Ig3 domains of contactin 5 and -6 with the appearance of an omega loop that could adopt three distinct conformations. However, interactive residues between human contactin 4-6 and PTPRG were strictly conserved. We did not observe any differences in PTPRG binding on contactin 5 and -6 either. Our data suggest that the differential contactin effects on neurite outgrowth do not result from distinct interactions with PTPRG. A better understanding of the contactin cellular properties should help elucidate their roles in ASD.


Neuronal Ig/Caspr recognition promotes the formation of axoaxonic synapses in mouse spinal cord.

  • Soha Ashrafi‎ et al.
  • Neuron‎
  • 2014‎

Inhibitory microcircuits are wired with a precision that underlies their complex regulatory roles in neural information processing. In the spinal cord, one specialized class of GABAergic interneurons (GABApre) mediates presynaptic inhibitory control of sensory-motor synapses. The synaptic targeting of these GABAergic neurons exhibits an absolute dependence on proprioceptive sensory terminals, yet the molecular underpinnings of this specialized axoaxonic organization remain unclear. Here, we show that sensory expression of an NB2 (Contactin5)/Caspr4 coreceptor complex, together with spinal interneuron expression of NrCAM/CHL1, directs the high-density accumulation of GABAergic boutons on sensory terminals. Moreover, genetic elimination of NB2 results in a disproportionate stripping of inhibitory boutons from high-density GABApre-sensory synapses, suggesting that the preterminal axons of GABApre neurons compete for access to individual sensory terminals. Our findings define a recognition complex that contributes to the assembly and organization of a specialized GABAergic microcircuit.


Ablation of Mrds1/Ofcc1 induces hyper-γ-glutamyl transpeptidasemia without abnormal head development and schizophrenia-relevant behaviors in mice.

  • Tetsuo Ohnishi‎ et al.
  • PloS one‎
  • 2011‎

Mutations in the Opo gene result in eye malformation in medaka fish. The human ortholog of this gene, MRDS1/OFCC1, is a potentially causal gene for orofacial cleft, as well as a susceptibility gene for schizophrenia, a devastating mental illness. Based on this evidence, we hypothesized that this gene could perform crucial functions in the development of head and brain structures in vertebrates. To test this hypothesis, we created Mrds1/Ofcc1-null mice. Mice were examined thoroughly using an abnormality screening system referred to as "the Japan Mouse Clinic". No malformations of the head structure, eye or other parts of the body were apparent in these knockout mice. However, the mutant mice showed a marked increase in serum γ-glutamyl transpeptidase (GGT), a marker for liver damage, but no abnormalities in other liver-related measurements. We also performed a family-based association study on the gene in schizophrenia samples of Japanese origin. We found five single nucleotide polymorphisms (SNPs) located across the gene that showed significant transmission distortion, supporting a prior report of association in a Caucasian cohort. However, the knockout mice showed no behavioral phenotypes relevant to schizophrenia. In conclusion, disruption of the Mrds1/Ofcc1 gene elicits asymptomatic hyper-γ-glutamyl-transpeptidasemia in mice. However, there were no phenotypes to support a role for the gene in the development of eye and craniofacial structures in vertebrates. These results prompt further examination of the gene, including its putative contribution to hyper-γ-glutamyl transpeptidasemia and schizophrenia.


Cell surface sialylation and fucosylation are regulated by L1 via phospholipase Cgamma and cooperate to modulate neurite outgrowth, cell survival and migration.

  • Ya-Li Li‎ et al.
  • PloS one‎
  • 2008‎

Cell surface glycosylation patterns are markers of cell type and status. However, the mechanisms regulating surface glycosylation patterns remain unknown.


Preferential localization of neural cell recognition molecule NB-2 in developing glutamatergic neurons in the rat auditory brainstem.

  • Manabu Toyoshima‎ et al.
  • The Journal of comparative neurology‎
  • 2009‎

NB-2 is a neuronal cell recognition molecule that is preferentially expressed in auditory pathways. Mice deficient in the NB-2 gene exhibit aberrant responses to acoustic stimuli. Here we examined the expression and localization of NB-2 in the auditory brainstem during development in the rat. NB-2 was strongly expressed in the ventral cochlear nucleus (VCN), ventral acoustic stria, lateral and medial superior olivary complex (SOC), superior paraolivary nucleus, medial nucleus of the trapezoid body (MNTB), ventrolateral lemniscus, and central nucleus of the inferior colliculus (CIC). In the VCN and CIC, NB-2 was expressed in the regions that are known to respond to high frequencies. In situ hybridization combined with immunohistochemistry suggested that NB-2 is expressed only in neurons. NB-2 was colocalized with glutamatergic elements in the neuropil and the calyces of Held but not with glycinergic or GABAergic elements. NB-2 expression in the SOC was first detected at embryonic day (E)19, reached a maximum level at postnatal day (P)7, and declined thereafter. Immunolabeling with VGLUT1 and VGLUT2, markers for mature and premature glutamatergic synapses, respectively, in combination with NB-2 immunolabeling revealed that NB-2 is expressed at glutamatergic synapses. Collectively, our findings suggest that NB-2 plays a key role in maturation of glutamatergic synapses in the brainstem during the final stages of auditory development.


Elevated Neuronal Excitability Due to Modulation of the Voltage-Gated Sodium Channel Nav1.6 by Aβ1-42.

  • Xi Wang‎ et al.
  • Frontiers in neuroscience‎
  • 2016‎

Aberrant increases in neuronal network excitability may contribute to the cognitive deficits in Alzheimer's disease (AD). However, the mechanisms underlying hyperexcitability are not fully understood. Such overexcitation of neuronal networks has been detected in the brains of APP/PS1 mice. In the present study, using current-clamp recording techniques, we observed that 12 days in vitro (DIV) primary cultured pyramidal neurons from P0 APP/PS1 mice exhibited a more prominent action potential burst and a lower threshold than WT littermates. Moreover, after treatment with Aβ1-42 peptide, 12 DIV primary cultured neurons showed similar changes, to a greater degree than in controls. Voltage-clamp recordings revealed that the voltage-dependent sodium current density of neurons incubated with Aβ1-42 was significantly increased, without change in the voltage-dependent sodium channel kinetic characteristics. Immunohistochemistry and western blot results showed that, after treatment with Aβ1-42, expressions of Nav and Nav1.6 subtype increased in cultured neurons or APP/PS1 brains compared to control groups. The intrinsic neuronal hyperexcitability of APP/PS1 mice might thus be due to an increased expression of voltage-dependent sodium channels induced by Aβ1-42. These results may illuminate the mechanism of aberrant neuronal networks in AD.


Cell adhesion molecule contactin-associated protein 3 is expressed in the mouse basal ganglia during early postnatal stages.

  • Haruna Hirata‎ et al.
  • Journal of neuroscience research‎
  • 2016‎

Cell adhesion molecules play important roles in the development of the nervous system. Among the contactin-associated protein (Caspr; also known as Cntnap) family, which belongs to the neurexin superfamily of proteins, Caspr and Caspr2 are indispensable for the formation and maintenance of myelinated nerves. In contrast, a physiological role for Caspr3 remains to be elucidated. This study examines the expression and localization of Caspr3 in the mouse brain using newly generated Caspr3 antibodies. Caspr3 was expressed abundantly between the first and the second postnatal weeks. During this period, Caspr3 was localized especially to the basal ganglia, including the striatum, external segment of the globus pallidus, and substantia nigra, and no gross abnormalities were apparent in the basal ganglia of Caspr3 knockout mice. In the striatum, Caspr3 was expressed by a subpopulation of medium spiny neurons that constitute the direct and indirect pathways. Caspr3 immunostaining was observed as punctate around the cell bodies as well as in the soma. These Caspr3 signals did not, however, overlap with those of synaptic markers. Our findings suggest that Caspr3 may play an important role in basal ganglia development during early postnatal stages.


The Ca(2+) channel inhibitor 2-APB reverses β-amyloid-induced LTP deficit in hippocampus by blocking BAX and caspase-3 hyperactivation.

  • Wei-Yan Hu‎ et al.
  • British journal of pharmacology‎
  • 2015‎

At the early stage of Alzheimer's disease (AD), the accumulation of β-amyloid (Aβ) oligomers disturbs intracellular Ca(2+) homeostasis and disrupts synaptic plasticity of brain neurons. Prevention of Aβ-induced synaptic failure remains an unsolved problem for the treatment of AD. Here, the effects of 2-aminoethoxydiphenyl borate (2-APB), a non-specific, but moderately potent Ca(2+) channel inhibitor, on Aβ-induced deficit of synaptic long-term potentiation (LTP) and the underlying molecular mechanisms were explored.


p38 MAPK Inhibition Improves Synaptic Plasticity and Memory in Angiotensin II-dependent Hypertensive Mice.

  • Hai-Long Dai‎ et al.
  • Scientific reports‎
  • 2016‎

The pathogenesis of hypertension-related cognitive impairment has not been sufficiently clarified, new molecular targets are needed. p38 MAPK pathway plays an important role in hypertensive target organ damage. Activated p38 MAPK was seen in AD brain tissue. In this study, we found that long-term potentiation (LTP) of hippocampal CA1 was decreased, the density of the dendritic spines on the CA1 pyramidal cells was reduced, the p-p38 protein expression in hippocampus was elevated, and cognitive function was impaired in angiotensin II-dependent hypertensive C57BL/6 mice. In vivo, using a p38 heterozygous knockdown mice (p38(KI/+)) model, we showed that knockdown of p38 MAPK in hippocampus leads to the improvement of cognitive function and hippocampal synaptic plasticity in angiotensin II-dependent p38(KI/+) hypertensive mice. In vitro, LTP was improved in hippocampal slices from C57BL/6 hypertensive mice by treatment with p38MAPK inhibitor SKF86002. Our data demonstrated that p38 MAPK may be a potential therapeutic target for hypertension-related cognitive dysfunction.


Amyloid precursor protein modulates Nav1.6 sodium channel currents through a Go-coupled JNK pathway.

  • Shao Li‎ et al.
  • Scientific reports‎
  • 2016‎

Amyloid precursor protein (APP), commonly associated with Alzheimer's disease, also marks axonal degeneration. In the recent studies, we demonstrated that APP aggregated at nodes of Ranvier (NORs) in myelinated central nervous system (CNS) axons and interacted with Nav1.6. However, the physiological function of APP remains unknown. In this study, we described reduced sodium current densities in APP knockout hippocampal neurons. Coexpression of APP or its intracellular domains containing a VTPEER motif with Nav1.6 sodium channels in Xenopus oocytes resulted in an increase in peak sodium currents, which was enhanced by constitutively active Go mutant and blocked by a dominant negative mutant. JNK and CDK5 inhibitor attenuated increases in Nav1.6 sodium currents induced by overexpression of APP. Nav1.6 sodium currents were increased by APPT668E (mutant Thr to Glu) and decreased by T668A (mutant Thr to ALa) mutant, respectively. The cell surface expression of Nav1.6 sodium channels in the white matter of spinal cord and the spinal conduction velocity is decreased in APP, p35 and JNK3 knockout mice. Therefore, APP modulates Nav1.6 sodium channels through a Go-coupled JNK pathway, which is dependent on phosphorylation of APP at Thr668.


Loss of neural recognition molecule NB-3 delays the normal projection and terminal branching of developing corticospinal tract axons in the mouse.

  • Zhenhui Huang‎ et al.
  • The Journal of comparative neurology‎
  • 2012‎

Neural recognition molecule NB-3 is involved in neural development and synapse formation. However, its role in axon tract formation is unclear. In this study, we found that the temporal expression of NB-3 in the deep layers of the motor cortex in mice was coincident with the development of the corticospinal tract (CST). Clear NB-3 immunoreactivity in the CST trajectory strongly suggested that NB-3 was expressed specifically in projecting CST axons. By tracing CST axons in NB-3−/− mice at different developmental stages, we found that these axons were capable of projecting and forming a normal trajectory. However, the projection was greatly delayed in NB-3−/− mice compared with wild-type (WT) mice from the embryonic to postnatal stages, a period that is coincident with the completion of the CST projection in mice. Subsequently, although their projection was delayed, CST axons in NB-3−/− mice gradually completed a normal projection. By stage P21, the characteristics of CST projections in NB-3−/− mice were not statistically different from those in WT mice. In addition, we found that the branching of CST axons into spinal gray matter also was delayed in NB-3−/− mice. The CST innervation area in the spinal gray matter of NB-3−/− mice was greatly reduced in comparison with WT mice until P30 and gradually became normal by P45. These data suggest that NB-3 is involved in the normal projection and terminal branching of developing CST axons.


Impairment of learning and memory in TAG-1 deficient mice associated with shorter CNS internodes and disrupted juxtaparanodes.

  • Maria Savvaki‎ et al.
  • Molecular and cellular neurosciences‎
  • 2008‎

The cell adhesion molecule TAG-1 is expressed by neurons and glial cells and plays a role in axon outgrowth, migration and fasciculation during development. TAG-1 is also required for the clustering of Kv1.1/1.2 potassium channels and Caspr2 at the juxtaparanodes of myelinated fibers. Behavioral examination of TAG-1 deficient mice (Tag-1(-/-)) showed cognitive impairments in the Morris water maze and novel object recognition tests, reduced spontaneous motor activity, abnormal gait coordination and increased response latency to noxious stimulation. Investigation at the molecular level revealed impaired juxtaparanodal clustering of Caspr2 and Kv1.1/1.2 in the hippocampus, entorhinal cortex, cerebellum and olfactory bulb, with diffusion into the internode. Caspr2 and Kv1.1 levels were reduced in the cerebellum and olfactory bulb. Moreover, Tag-1(-/-) mice had shorter internodes in the cerebral and cerebellar white matter. The detected molecular alterations may account for the behavioural deficits and hyperexcitability in these animals.


APP upregulation contributes to retinal ganglion cell degeneration via JNK3.

  • Chao Liu‎ et al.
  • Cell death and differentiation‎
  • 2018‎

Axonal injury is a common feature of central nervous system insults. Upregulation of amyloid precursor protein (APP) is observed following central nervous system neurotrauma and is regarded as a marker of central nervous system axonal injury. However, the underlying mechanism by which APP mediates neuronal death remains to be elucidated. Here, we used mouse optic nerve axotomy (ONA) to model central nervous system axonal injury replicating aspects of retinal ganglion cell (RGC) death in optic neuropathies. APP and APP intracellular domain (AICD) were upregulated in retina after ONA and APP knockout reduced Tuj1+ RGC loss. Pathway analysis of microarray data combined with chromatin immunoprecipitation and a luciferase reporter assay demonstrated that AICD interacts with the JNK3 gene locus and regulates JNK3 expression. Moreover, JNK3 was found to be upregulated after ONA and to contribute to Tuj1+ RGC death. APP knockout reduced the ONA-induced enhanced expression of JNK3 and phosphorylated JNK (pJNK). Gamma-secretase inhibitors prevented production of AICD, reduced JNK3 and pJNK expression similarly, and protected Tuj1+ RGCs from ONA-induced cell death. Together these data indicate that ONA induces APP expression and that gamma-secretase cleavage of APP releases AICD, which upregulates JNK3 leading to RGC death. This pathway may be a novel target for neuronal protection in optic neuropathies and other forms of neurotrauma.


Absence of TRIM32 Leads to Reduced GABAergic Interneuron Generation and Autism-like Behaviors in Mice via Suppressing mTOR Signaling.

  • Jian-Wei Zhu‎ et al.
  • Cerebral cortex (New York, N.Y. : 1991)‎
  • 2020‎

Mammalian target of rapamycin (mTOR) signaling plays essential roles in brain development. Hyperactive mTOR is an essential pathological mechanism in autism spectrum disorder (ASD). Here, we show that tripartite motif protein 32 (TRIM32), as a maintainer of mTOR activity through promoting the proteasomal degradation of G protein signaling protein 10 (RGS10), regulates the proliferation of medial/lateral ganglionic eminence (M/LGE) progenitors. Deficiency of TRIM32 results in an impaired generation of GABAergic interneurons and autism-like behaviors in mice, concomitant with an elevated autophagy, which can be rescued by treatment embryonically with 3BDO, an mTOR activator. Transplantation of M/LGE progenitors or treatment postnatally with clonazepam, an agonist of the GABAA receptor, rescues the hyperexcitability and the autistic behaviors of TRIM32-/- mice, indicating a causal contribution of GABAergic disinhibition. Thus, the present study suggests a novel mechanism for ASD etiology in that TRIM32 deficiency-caused hypoactive mTOR, which is linked to an elevated autophagy, leads to autism-like behaviors via impairing generation of GABAergic interneurons. TRIM32-/- mouse is a novel autism model mouse.


CHL1 negatively regulates the proliferation and neuronal differentiation of neural progenitor cells through activation of the ERK1/2 MAPK pathway.

  • Xin Huang‎ et al.
  • Molecular and cellular neurosciences‎
  • 2011‎

Neural recognition molecules of the immunoglobulin superfamily play important roles in the development and regeneration of nervous system. Close Homologue of L1 (CHL1) is a member of the L1 family of recognition molecules which are expressed during neuronal development, suggesting a potential role in neural progenitor cells (NPCs). Here, we investigated the role of CHL1 in the proliferation and differentiation of NPCs both in vivo and in vitro, and the possible mechanism involved. The number of BrdU-positive cells in the subventricular zone (SVZ) significantly increased in CHL1-/- mice compared with CHL1+/+ mice. Moreover, there were more Tuj1-positive cells in the cortical plate region in CHL1-/- mice than in CHL1+/+ controls. To further examine the function of CHL1 in the proliferation and differentiation of NPCs, NPCs from CHL1-/- mice versus littermate wild-type mice were isolated and cultured in vitro. NPCs derived from CHL1-/- mice showed increased proliferation and self-renewal ability compared with CHL1+/+ mice. In the course of differentiation, CHL1 deficiency enhanced neuronal differentiation in the absence of growth factors. Furthermore, CHL1 deficiency on the proliferation of NPCs is accompanied by means of enhanced activation of ERK1/2 mitogen-activated protein kinase (MAPK) and the inhibitor of ERK1/2 MAPK eliminates the effect of CHL1 deficiency on the proliferation of NPCs. Our results first describe the negative modulation of the proliferation and neuronal differentiation of NPCs by CHL1/ERK1/2 MAPK signaling.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: