2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 110 papers

Comparative effects of raloxifene, tamoxifen and estradiol on human osteoblasts in vitro: estrogen receptor dependent or independent pathways of raloxifene.

  • Yasuhiro Miki‎ et al.
  • The Journal of steroid biochemistry and molecular biology‎
  • 2009‎

SERMs bind to both estrogen receptor (ER)alpha and beta, resulting in tissue dependent estrogen agonist or antagonist responses. Both raloxifene and tamoxifen are most frequently used SERMs and exert estrogen agonistic effects on human bone tissues, but the details of their possible direct effects on human bone cells have remained largely unknown. In our present study, we examined the comparative effects of raloxifene, tamoxifen, and native estrogen, estradiol on human osteoblast cell line, hFOB in vitro. Both the cell numbers and the ratio of the cells in S phase fraction were significantly increased by the treatment of raloxifene or tamoxifen as well as estradiol treatments in hFOB. Gene profile patterns following treatment with raloxifene, tamoxifen, and estradiol demonstrated similar patterns in a microarray/hierarchal clustering analysis. We also examined the expression levels of these genes detected by this analysis using quantitative RT-PCR. MAF gene was induced by raloxifene treatment alone. GAS6 gene was induced by raloxifene and tamoxifen as well as estradiol. An estrogen receptor blocker, ICI 18, 286, inhibited an increase of GAS6 gene expression but not the levels of MAF gene mRNA expression. Results of our present study demonstrated that raloxifene exerted direct protective effects on human osteoblasts in both estrogen receptor dependent and independent manners.


Netrin 1 provides a chemoattractive cue for the ventral migration of GnRH neurons in the chick forebrain.

  • Shizuko Murakami‎ et al.
  • The Journal of comparative neurology‎
  • 2010‎

Hypothalamic gonadotropin-releasing hormone (GnRH) neurons originate in the olfactory placode and migrate to the forebrain during embryonic development. We found that GnRH neurons migrated in two different modes in the chick medial telencephalon: they initially underwent axophilic migration in association with a subset of olfactory fibers in a dorsocaudal direction. This was followed by ventrally directed tangential migration to the basal forebrain. Since many of the ventrally migrating GnRH neurons did not follow distinct fiber fascicles, it is proposed that diffusible guidance molecules played a role in this migratory process. A long-range diffusible factor, netrin 1, was expressed in the lower part of the commissural plate and the subpallial septum, but not along the axophilic migratory route of GnRH neurons. Failure of ventrally directed migration of GnRH neurons and their misrouting to the dorsomedial forebrain was induced by misexpression of netrin 1 in the dorsocaudal part of the septum near the top of the commissural plate, which is where the migration of GnRH neurons changed to a ventral direction. In such cases, a subset of olfactory fibers also extended, but close contact between aberrant fibers and misrouted GnRH neurons did not exist. A coculture experiment demonstrated that netrin 1 exerts an attractive effect on migrating GnRH neurons. These results provide evidence that netrin 1 acts as chemoattractant to migrating GnRH neurons at the dorsocaudal part of the septum and has the potential to regulate the ventral migration of GnRH neurons to the ventral septum and the preoptic area.


Increased androgen receptor activity and cell proliferation in aromatase inhibitor-resistant breast carcinoma.

  • Rika Fujii‎ et al.
  • The Journal of steroid biochemistry and molecular biology‎
  • 2014‎

Aromatase inhibitors (AI) are commonly used to treat postmenopausal estrogen-receptor (ER)-positive breast carcinoma. However, resistance to AI is sometimes acquired, and the molecular mechanisms underlying such resistance are largely unclear. Recent studies suggest that AI treatment increases androgen activity during estrogen deprivation in breast carcinoma, but the role of the androgen receptor (AR) in breast carcinoma is still a matter of controversy. The purpose of this study is to examine the potential correlation between the AR- and AI-resistant breast carcinoma. To this end, we performed immunohistochemical analysis of 21 pairs of primary breast carcinoma and corresponding AI-resistant recurrent tissue samples and established two stable variant cell lines from ER-positive T-47D breast carcinoma cell line as AI-resistance models and used them in in vitro experiments. Immunohistochemical analysis demonstrated that the expression of prostate-specific antigen (PSA) and Ki-67 were significantly higher and ER and progesterone receptor (PR) were lower in recurrent lesions compared to the corresponding primary lesions. Variant cell lines overexpressed AR and PSA and exhibited neither growth response to estrogen nor expression of ER. Androgen markedly induced the proliferation of these cell lines. In addition, the expression profile of androgen-induced genes was markedly different between variant and parental cell lines as determined by microarray analysis. These results suggest that in some cases of ER-positive breast carcinoma, tumor cells possibly change from ER-dependent to AR-dependent, rendering them resistant to AI. AR inhibitors may thus be effective in a selected group of patients.


Promotion of atherosclerosis by Helicobacter cinaedi infection that involves macrophage-driven proinflammatory responses.

  • Shahzada Khan‎ et al.
  • Scientific reports‎
  • 2014‎

Helicobacter cinaedi is the most common enterohepatic Helicobacter species that causes bacteremia in humans, but its pathogenicity is unclear. Here, we investigated the possible association of H. cinaedi with atherosclerosis in vivo and in vitro. We found that H. cinaedi infection significantly enhanced atherosclerosis in hyperlipidaemic mice. Aortic root lesions in infected mice showed increased accumulation of neutrophils and F4/80(+) foam cells, which was due, at least partly, to bacteria-mediated increased expression of proinflammatory genes. Although infection was asymptomatic, detection of cytolethal distending toxin RNA of H. cinaedi indicated aorta infection. H. cinaedi infection altered expression of cholesterol receptors and transporters in cultured macrophages and caused foam cell formation. Also, infection induced differentiation of THP-1 monocytes. These data provide the first evidence of a pathogenic role of H. cinaedi in atherosclerosis in experimental models, thereby justifying additional investigations of the possible role of enterohepatic Helicobacter spp. in atherosclerosis and cardiovascular disease.


GATA4 immunolocalization in breast carcinoma as a potent prognostic predictor.

  • Kiyoshi Takagi‎ et al.
  • Cancer science‎
  • 2014‎

Transcriptional GATA factors are known lineage selector genes and regulate a variety of biological processes including specification and differentiation of tissues. In the present study, we examined expression profiles of six GATA factor genes in invasive ductal carcinomas (IDC) of the breast using microarray analysis (n = 20) and found that GATA4 expression was closely correlated with recurrence in patients. Because the significance of GATA4 has remained largely unknown in breast carcinoma, we further immunolocalized GATA4 in ductal carcinoma in situ (DCIS) of the breast (n = 48) and IDC (n = 163). GATA4 immunoreactivity was detected in the nuclei of carcinoma cells and was positive in 27% of DCIS and 31% of IDC cases. GATA4 status was significantly associated with nuclear grade and van Nuys classification in DCIS and was positively associated with distant metastasis, histological grade and HER2 status, but negatively correlated with progesterone receptor labeling index in IDC. Subsequent multivariate analysis demonstrated that GATA4 status was an independent prognostic factor for both disease-free and breast cancer-specific survival of IDC patients. All of these results indicate that GATA4 plays important roles in the progression of breast carcinoma from an early stage and that immunohistochemical GATA4 status is considered a potent prognostic factor in human breast cancer patients.


Intratumoral localization and activity of 17β-hydroxysteroid dehydrogenase type 1 in non-small cell lung cancer: a potent prognostic factor.

  • Mohit K Verma‎ et al.
  • Journal of translational medicine‎
  • 2013‎

Estrogens were recently demonstrated to be synthesized in non-small cell lung carcinomas (NSCLCs) via aromatase activity and aromatase inhibitor (AI) did suppressed estrogen receptor (ER) positive NSCLC growth. However, other enzymes involved in intratumoral production and metabolism of estrogens, i.e. 17β-hydroxysteroid dehydrogenases (i.e. 17βHSD1 and 17βHSD2) and others have not been studied. Therefore, in this study, we examined the clinical/ biological significance of 17β-hydroxysteroid dehydrogenases in NSCLCs.


Differential Involvement of Autophagy and Apoptosis in Response to Chemoendocrine and Endocrine Therapy in Breast Cancer: JBCRG-07TR.

  • Takayuki Ueno‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Endocrine therapy is an essential component in the curative treatment of hormone receptor (HR)-positive breast cancer. To improve treatment efficacy, the addition of metronomic chemotherapy has been tested and shown to improve therapeutic effects. To better understand cellular reactions to metronomic chemoendocrine therapy, we studied autophagy-related markers, beclin 1 and LC3, and apoptosis-related markers, TUNEL and M30, in pre- and post-treatment cancer tissues from a multicenter neoadjuvant trial, JBCRG-07, in which oral cyclophosphamide plus letrozole were administered to postmenopausal patients with HR-positive breast cancer. Changes in the levels of markers were compared with those following neoadjuvant endocrine therapy according to clinical response. Apoptosis, in addition to autophagy-related markers, increased following metronomic chemoendocrine therapy and such increases were associated with clinical response. By contrast, following endocrine therapy, the levels of apoptosis-related markers did not increase regardless of clinical response, whereas the levels of autophagy-related markers increased. Furthermore, levels of the apoptosis-related marker, M30, decreased in responders of endocrine therapy, suggesting that the induction of apoptosis by metronomic chemoendocrine therapy was involved in the improved clinical outcome compared with endocrine therapy. In conclusion, metronomic chemoendocrine therapy induced a different cellular reaction from that of endocrine therapy, including the induction of apoptosis, which is likely to contribute to improved efficacy compared with endocrine therapy alone.


In Situ Evaluation of Estrogen Receptor Dimers in Breast Carcinoma Cells: Visualization of Protein-Protein Interactions.

  • Erina Iwabuchi‎ et al.
  • Acta histochemica et cytochemica‎
  • 2017‎

The estrogen receptor (ER) functions as a dimer and is involved in several different biological functions. However ER dimeric proteins have not been identified by in situ methodologies. Structured illumination microscopy (SIM) has been recently developed, which enabled the localization of protein and protein interaction. Therefore, in this study, we firstly demonstrated that ERs formed both homodimers and heterodimers in breast carcinoma cell lines using Nikon's SIM (N-SIM). ERα/α homodimers were detected in the nuclei of both ERα-positive MCF-7 and T-47D cells; 23.0% and 13.4% of ERα proteins formed ERα/α homodimers, respectively. ERα/β heterodimers were also detected in MCF-7 and T-47D. Approximately 6.6% of both ERα and ERβ1 proteins formed ERα/β1 heterodimers in MCF-7. In addition, 18.1% and 22.4% of ERα and ERβ proteins formed ERα/β2 heterodimers and ERα/β5 heterodimers in MCF-7, respectively. In addition, by using proximity ligation assay (PLA) in MCF-7, estradiol-induced ERα/α homodimers and ERα/β1 heterodimers were both detected after 15 to 45 min of treatment and at 15 min, respectively. The percentage of total ER proteins could also be determined using N-SIM. By using both methods, it has become possible to evaluate precise localization and ratio of ER dimers among different cell types.


Enhanced Cellular Polysulfides Negatively Regulate TLR4 Signaling and Mitigate Lethal Endotoxin Shock.

  • Tianli Zhang‎ et al.
  • Cell chemical biology‎
  • 2019‎

Cysteine persulfide and cysteine polysulfides are cysteine derivatives having sulfane sulfur atoms bound to cysteine thiol. Accumulating evidence has suggested that cysteine persulfides/polysulfides are abundant in prokaryotes and eukaryotes and play important roles in diverse biological processes such as antioxidant host defense and redox-dependent signal transduction. Here, we show that enhancement of cellular polysulfides by using polysulfide donors developed in this study resulted in marked inhibition of lipopolysaccharide (LPS)-initiated macrophage activation. Polysulfide donor treatment strongly suppressed LPS-induced pro-inflammatory responses in macrophages by inhibiting Toll-like receptor 4 (TLR4) signaling. Other TLR signaling stimulants-including zymosan A-TLR2 and poly(I:C)-TLR3-were also significantly suppressed by polysulfur donor treatment. Administration of polysulfide donors protected mice from lethal endotoxin shock. These data indicate that cellular polysulfides negatively regulate TLR4-mediated pro-inflammatory signaling and hence constitute a potential target for inflammatory disorders.


Prevalence of Somatic Mutations in Aldosterone-Producing Adenomas in Japanese Patients.

  • Kazutaka Nanba‎ et al.
  • The Journal of clinical endocrinology and metabolism‎
  • 2020‎

Results of previous studies demonstrated clear racial differences in the prevalence of somatic mutations among patients with aldosterone-producing adenoma (APA). For instance, those in East Asian countries have a high prevalence of somatic mutations in KCNJ5, whereas somatic mutations in other aldosterone-driving genes are rare.


L-type amino acid transporter 1 is associated with chemoresistance in breast cancer via the promotion of amino acid metabolism.

  • Miku Sato‎ et al.
  • Scientific reports‎
  • 2021‎

18F-FDG PET/CT has been used as an indicator of chemotherapy effects, but cancer cells can remain even when no FDG uptake is detected, indicating the importance of exploring other metabolomic pathways. Therefore, we explored the amino acid metabolism, including L-type amino acid transporter-1 (LAT1), in breast cancer tissues and clarified the role of LAT1 in therapeutic resistance and clinical outcomes of patients. We evaluated LAT1 expression before and after neoadjuvant chemotherapy and examined the correlation of glucose uptake using FDG-PET with the pathological response of patients. It revealed that LAT1 levels correlated with proliferation after chemotherapy, and amino acid and glucose metabolism were closely correlated. In addition, LAT1 was considered to be involved in treatment resistance and sensitivity only in luminal type breast cancer. Results of in vitro analyses revealed that LAT1 promoted amino acid uptake, which contributed to energy production by supplying amino acids to the TCA cycle. However, in MCF-7 cells treated with chemotherapeutic agents, oncometabolites and branched-chain amino acids also played a pivotal role in energy production and drug resistance, despite decreased glucose metabolism. In conclusion, LAT1 was involved in drug resistance and could be a novel therapeutic target against chemotherapy resistance in luminal type breast cancer.


Changes in Wnt-Dependent Neuronal Morphology Underlie the Anatomical Diversification of Neocortical Homologs in Amniotes.

  • Tadashi Nomura‎ et al.
  • Cell reports‎
  • 2020‎

The six-layered neocortex is a shared characteristic of all mammals, but not of non-mammalian species, and its formation requires an inside-out pattern of neuronal migration. The extant reptilian dorsal cortex is thought to represent an ancestral form of the neocortex, although how the reptilian three-layered cortex is formed is poorly understood. Here, we show unique patterns of lamination and neuronal migration in the developing reptilian cortex. While the multipolar-to-bipolar transition of migrating neurons is essential for mammalian cortical development, the reptilian cortex lacks bipolar-shaped migrating neurons, resulting in an outside-in pattern of cortical development. Furthermore, dynamic regulation of Wnt signal strengths contributes to neuronal morphological changes, which is conserved across species. Our data preclude the idea that the six-layered mammalian neocortex emerged by simple addition to the reptilian dorsal cortex but suggest that the acquisition of a novel neuronal morphology based on conserved developmental programs contributed to neocortical evolution.


CCNB2 and AURKA overexpression may cause atypical mitosis in Japanese cortisol-producing adrenocortical carcinoma with TP53 somatic variant.

  • Akira Ikeya‎ et al.
  • PloS one‎
  • 2020‎

Many genomic analyses of cortisol-producing adrenocortical carcinoma (ACC) have been reported, but very few have come from East Asia. The first objective of this study is to verify the genetic difference with the previous reports by analyzing targeted deep sequencing of 7 Japanese ACC cases using next-generation sequencing (NGS). The second objective is to compare the somatic variant findings identified by NGS analysis with clinical and pathological findings, aiming to acquire new knowledge about the factors that contribute to the poor prognosis of ACC and to find new targets for the treatment of ACC.


Exploring Protein⁻Protein Interaction in the Study of Hormone-Dependent Cancers.

  • Yasuhiro Miki‎ et al.
  • International journal of molecular sciences‎
  • 2018‎

Estrogen receptors promote target gene transcription when they form a dimer, in which two identical (homodimer) or different (heterodimer) proteins are bound to each other. In hormone-dependent cancers, hormone receptor dimerization plays pivotal roles, not only in the pathogenesis or development of the tumors, but also in the development of therapeutic resistance. Protein⁻protein interactions (PPIs), including dimerization and complex formation, have been also well-known to be required for proteins to exert their functions. The methods which could detect PPIs are genetic engineering (i.e., resonance energy transfer) and/or antibody technology (i.e., co-immunoprecipitation) using cultured cells. In addition, visualization of the target proteins in tissues can be performed using antigen⁻antibody reactions, as in immunohistochemistry. Furthermore, development of microscopic techniques (i.e., electron microscopy and confocal laser microscopy) has made it possible to visualize intracellular and/or intranuclear organelles. We have recently reported the visualization of estrogen receptor dimers in breast cancer tissues by using the in situ proximity ligation assay (PLA). PLA was developed along the lines of antibody technology development, and this assay has made it possible to visualize PPIs in archival tissue specimens. Localization of PPI in organelles has also become possible using super-resolution microscopes exceeding the resolution limit of conventional microscopes. Therefore, in this review, we summarize the methodologies used for studying PPIs in both cells and tissues, and review the recently reported studies on PPIs of hormones.


Neuroimaging-pathological correlations of [18F]THK5351 PET in progressive supranuclear palsy.

  • Aiko Ishiki‎ et al.
  • Acta neuropathologica communications‎
  • 2018‎

Recent positron emission tomography (PET) studies have demonstrated the accumulation of tau PET tracer in the affected region of progressive supranuclear palsy (PSP) cases. To confirm the binding target of radiotracer in PSP, we performed an imaging-pathology correlation study in two autopsy-confirmed PSP patients who underwent [18F]THK5351 PET before death. One patient with PSP Richardson syndrome showed elevated tracer retention in the globus pallidus and midbrain. In a patient with PSP-progressive nonfluent aphasia, [18F]THK5351 retention also was observed in the cortical areas, particularly the temporal cortex. Neuropathological examination confirmed PSP in both patients. Regional [18F]THK5351 standardized uptake value ratio (SUVR) in antemortem PET was significantly correlated with monoamine oxidase-B (MAO-B) level, reactive astrocytes density, and tau pathology at postmortem examination. In in vitro autoradiography, specific THK5351 binding was detected in the area of antemortem [18F]THK5351 retention, and binding was blocked completely by a reversible selective MAO-B inhibitor, lazabemide, in brain samples from these patients. In conclusion, [18F]THK5351 PET signals reflect MAO-B expressing reactive astrocytes, which may be associated with tau accumulation in PSP.


OLFM4, LY6D and S100A7 as potent markers for distant metastasis in estrogen receptor-positive breast carcinoma.

  • Akifumi Mayama‎ et al.
  • Cancer science‎
  • 2018‎

Metastatic breast cancer is a highly lethal disease, and it is very important to evaluate the biomarkers associated with distant metastasis. However, molecular features of distant metastasis remain largely unknown in breast cancer. Estrogens play an important role in the progression of breast cancer and the majority of stage IV breast carcinomas express estrogen receptor (ER). Therefore, in this study, we examined molecular markers associated with distant metastasis in ER-positive breast carcinoma by microarray and immunohistochemistry. When we examined the gene expression profile of ER-positive stage IV breast carcinoma tissues (n = 7) comparing ER-positive stage I-III cases (n = 11) by microarray analysis, we newly identified OLFM4, LY6D and S100A7, which were closely associated with the distant metastasis. Subsequently, we performed immunohistochemistry for OLFM4, LY6D and S100A7 in 168 ER-positive breast carcinomas. OLFM4, LY6D and S100A7 immunoreactivities were significantly associated with stage, pathological T factor, distant metastasis and Ki67 status in the ER-positive breast carcinomas. Moreover, these immunoreactivities were significantly associated with a worse prognostic factor for distant metastasis-free and breast cancer-specific survival in ER-positive stage I-III breast cancer patients. However, when we performed immunohistochemistry for OLFM4, LY6D and S100A7 in 40 ER-negative breast carcinomas, these immunoreactivities were not generally associated with the clinicopathological factors examined, including distant metastasis and prognosis of patients, in this study. These results suggest that OLFM4, LY6D and S100A7 immunoreactivity are associated with an aggressive phenotype of ER-positive breast carcinoma, and these are potent markers for distant metastasis of ER-positive breast cancer patients.


A common classification framework for neuroendocrine neoplasms: an International Agency for Research on Cancer (IARC) and World Health Organization (WHO) expert consensus proposal.

  • Guido Rindi‎ et al.
  • Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc‎
  • 2018‎

The classification of neuroendocrine neoplasms (NENs) differs between organ systems and currently causes considerable confusion. A uniform classification framework for NENs at any anatomical location may reduce inconsistencies and contradictions among the various systems currently in use. The classification suggested here is intended to allow pathologists and clinicians to manage their patients with NENs consistently, while acknowledging organ-specific differences in classification criteria, tumor biology, and prognostic factors. The classification suggested is based on a consensus conference held at the International Agency for Research on Cancer (IARC) in November 2017 and subsequent discussion with additional experts. The key feature of the new classification is a distinction between differentiated neuroendocrine tumors (NETs), also designated carcinoid tumors in some systems, and poorly differentiated NECs, as they both share common expression of neuroendocrine markers. This dichotomous morphological subdivision into NETs and NECs is supported by genetic evidence at specific anatomic sites as well as clinical, epidemiologic, histologic, and prognostic differences. In many organ systems, NETs are graded as G1, G2, or G3 based on mitotic count and/or Ki-67 labeling index, and/or the presence of necrosis; NECs are considered high grade by definition. We believe this conceptual approach can form the basis for the next generation of NEN classifications and will allow more consistent taxonomy to understand how neoplasms from different organ systems inter-relate clinically and genetically.


SIRT7 regulates the nuclear export of NF-κB p65 by deacetylating Ran.

  • Shihab U Sobuz‎ et al.
  • Biochimica et biophysica acta. Molecular cell research‎
  • 2019‎

Sirtuin 7 (SIRT7) is an NAD+-dependent lysine deacetylase that regulates diverse biological processes. We recently observed that SIRT7 deficiency suppresses the nuclear accumulation of p65, which is a component of nuclear factor kappa B. However, the underlying molecular mechanism remains elusive. In this study, we demonstrated that SIRT7 interacts with a small GTPase, Ras-related nuclear antigen (Ran), and deacetylates Ran at K37. The nuclear export of p65 was facilitated in SIRT7-deficient fibroblast cells, while the nuclear export was inhibited in SIRT7-deficient cells expressing K37R-Ran (deacetylation-mimicking mutant). Additionally, the nuclear export of p65 in wild-type fibroblast cells was promoted by K37Q-Ran (acetylation-mimicking mutant). K37Q-Ran exhibited an increased ability to bind to chromosome region maintenance 1 (CRM1), which is a major nuclear receptor that mediates the export of cargo proteins, and enhanced the binding between p65 and CRM1. These data suggest that SIRT7 is a lysine deacetylase that targets the K37 residue of Ran to suppress the nuclear export of p65.


EphB4 as a Novel Target for the EGFR-Independent Suppressive Effects of Osimertinib on Cell Cycle Progression in Non-Small Cell Lung Cancer.

  • Ren Nanamiya‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Osimertinib is the latest generation epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor used for patients with EGFR-mutated non-small cell lung cancer (NSCLC). We aimed to explore the novel mechanisms of osimertinib by particularly focusing on EGFR-independent effects, which have not been well characterized. We explored the EGFR-independent effects of osimertinib on cell proliferation using NSCLC cell lines, an antibody array analysis, and the association between the action of osimertinib and the ephrin receptor B4 (EphB4). We also studied the clinicopathological significance of EphB4 in 84 lung adenocarcinoma patients. Osimertinib exerted significant inhibitory effects on cell growth and cell cycle progression by promoting the phosphorylation of p53 and p21 and decreasing cyclin D1 expression independently of EGFR. EphB4 was significantly suppressed by osimertinib and promoted cell growth and sensitivity to osimertinib. The EphB4 status in carcinoma cells was positively correlated with tumor size, T factor, and Ki-67 labeling index in all patients and was associated with poor relapse-free survival in EGFR mutation-positive patients. EphB4 is associated with the EGFR-independent suppressive effects of osimertinib on cell cycle and with a poor clinical outcome. Osimertinib can exert significant growth inhibitory effects in EGFR-mutated NSCLC patients with a high EphB4 status.


ATP exposure stimulates glutathione efflux as a necessary switch for NLRP3 inflammasome activation.

  • Tianli Zhang‎ et al.
  • Redox biology‎
  • 2021‎

The NLRP3 inflammasome is a multiprotein complex responsible for the maturation of precursor forms of interleukin (IL)-1β and IL-18 into active proinflammatory cytokines. Increasing evidence suggests that modulation of redox homeostasis contributes to the activation of the NLRP3 inflammasome. However, specific mechanistic details remain unclear. We demonstrate here that ATP exposure evoked a sharp decrease in glutathione (GSH) levels in macrophages, which led to NLRP3 inflammasome activation. We detected an increase in GSH levels in culture supernatants that was comparable to the GSH decrease in macrophages, which suggests that exposure to ATP stimulated GSH efflux. Exogenous addition of P2X7 receptor antagonist, GSH, or the oxidized form GSSG attenuated this efflux. Also, exogenous GSH or GSSG strongly inhibited NLRP3 inflammasome activation in vitro and in vivo. These data suggest that GSH efflux controls NLRP3 inflammasome activation, which may lead to development of novel therapeutic strategies for NLRP3 inflammasome-associated disorders.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: