Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 102 papers

A multi-modal parcellation of human cerebral cortex.

  • Matthew F Glasser‎ et al.
  • Nature‎
  • 2016‎

Understanding the amazingly complex human cerebral cortex requires a map (or parcellation) of its major subdivisions, known as cortical areas. Making an accurate areal map has been a century-old objective in neuroscience. Using multi-modal magnetic resonance images from the Human Connectome Project (HCP) and an objective semi-automated neuroanatomical approach, we delineated 180 areas per hemisphere bounded by sharp changes in cortical architecture, function, connectivity, and/or topography in a precisely aligned group average of 210 healthy young adults. We characterized 97 new areas and 83 areas previously reported using post-mortem microscopy or other specialized study-specific approaches. To enable automated delineation and identification of these areas in new HCP subjects and in future studies, we trained a machine-learning classifier to recognize the multi-modal 'fingerprint' of each cortical area. This classifier detected the presence of 96.6% of the cortical areas in new subjects, replicated the group parcellation, and could correctly locate areas in individuals with atypical parcellations. The freely available parcellation and classifier will enable substantially improved neuroanatomical precision for studies of the structural and functional organization of human cerebral cortex and its variation across individuals and in development, aging, and disease.


ConnectomeDB--Sharing human brain connectivity data.

  • Michael R Hodge‎ et al.
  • NeuroImage‎
  • 2016‎

ConnectomeDB is a database for housing and disseminating data about human brain structure, function, and connectivity, along with associated behavioral and demographic data. It is the main archive and dissemination platform for data collected under the WU-Minn consortium Human Connectome Project. Additional connectome-style study data is and will be made available in the database under current and future projects, including the Connectome Coordination Facility. The database currently includes multiple modalities of magnetic resonance imaging (MRI) and magnetoencephalograpy (MEG) data along with associated behavioral data. MRI modalities include structural, task, resting state and diffusion. MEG modalities include resting state and task. Imaging data includes unprocessed, minimally preprocessed and analysis data. Imaging data and much of the behavioral data are publicly available, subject to acceptance of data use terms, while access to some sensitive behavioral data is restricted to qualified investigators under a more stringent set of terms. ConnectomeDB is the public side of the WU-Minn HCP database platform. As such, it is geared towards public distribution, with a web-based user interface designed to guide users to the optimal set of data for their needs and a robust backend mechanism based on the commercial Aspera fasp service to enable high speed downloads. HCP data is also available via direct shipment of hard drives and Amazon S3.


Simultaneous multi-slice Turbo-FLASH imaging with CAIPIRINHA for whole brain distortion-free pseudo-continuous arterial spin labeling at 3 and 7 T.

  • Yi Wang‎ et al.
  • NeuroImage‎
  • 2015‎

Simultaneous multi-slice (SMS) or multiband (MB) imaging has recently been attempted for arterial spin labeled (ASL) perfusion MRI in conjunction with echo-planar imaging (EPI) readout. It was found that SMS-EPI can reduce the T1 relaxation effect of the label and improve image coverage and resolution with little penalty in signal-to-noise ratio (SNR). However, EPI still suffers from geometric distortion and signal dropout from field inhomogeneity effects especially at high and ultrahigh magnetic fields. Here we present a novel scheme for achieving high fidelity distortion-free quantitative perfusion imaging by combining pseudo-continuous ASL (pCASL) with SMS Turbo-FLASH (TFL) readout at both 3 and 7 T. Bloch equation simulation was performed to characterize and optimize the TFL-based pCASL perfusion signal. Two MB factors (3 and 5) were implemented in SMS-TFL pCASL and compared with standard 2D TFL and EPI pCASL sequences. The temporal SNR of SMS-TFL pCASL relative to that of standard TFL pCASL was 0.76 ± 0.10 and 0.74 ± 0.11 at 7 T and 0.70 ± 0.05 and 0.65 ± 0.05 at 3T for MB factor of 3 and 5, respectively. By implementing background suppression in conjunction with SMS-TFL at 3T, the relative temporal SNR improved to 0.84 ± 0.09 and 0.79 ± 0.10 for MB factor of 3 and 5, respectively. Compared to EPI pCASL, significantly increased temporal SNR (p<0.001) and improved visualization of orbitofrontal cortex were achieved using SMS-TFL pCASL. By combining SMS acceleration with TFL pCASL, we demonstrated the feasibility for whole brain distortion-free quantitative mapping of cerebral blood flow at high and ultrahigh magnetic fields.


Sub-millimeter T2 weighted fMRI at 7 T: comparison of 3D-GRASE and 2D SE-EPI.

  • Valentin G Kemper‎ et al.
  • Frontiers in neuroscience‎
  • 2015‎

Functional magnetic resonance imaging (fMRI) allows studying human brain function non-invasively up to the spatial resolution of cortical columns and layers. Most fMRI acquisitions rely on the blood oxygenation level dependent (BOLD) contrast employing T(*) 2 weighted 2D multi-slice echo-planar imaging (EPI). At ultra-high magnetic field (i.e., 7 T and above), it has been shown experimentally and by simulation, that T2 weighted acquisitions yield a signal that is spatially more specific to the site of neuronal activity at the cost of functional sensitivity. This study compared two T2 weighted imaging sequences, inner-volume 3D Gradient-and-Spin-Echo (3D-GRASE) and 2D Spin-Echo EPI (SE-EPI), with evaluation of their imaging point-spread function (PSF), functional specificity, and functional sensitivity at sub-millimeter resolution. Simulations and measurements of the imaging PSF revealed that the strongest anisotropic blurring in 3D-GRASE (along the second phase-encoding direction) was about 60% higher than the strongest anisotropic blurring in 2D SE-EPI (along the phase-encoding direction). In a visual paradigm, the BOLD sensitivity of 3D-GRASE was found to be superior due to its higher temporal signal-to-noise ratio (tSNR). High resolution cortical depth profiles suggested that the contrast mechanisms are similar between the two sequences, however, 2D SE-EPI had a higher surface bias owing to the higher T(*) 2 contribution of the longer in-plane EPI echo-train for full field of view compared to the reduced field of view of zoomed 3D-GRASE.


The prestimulus default mode network state predicts cognitive task performance levels on a mental rotation task.

  • Tabea Kamp‎ et al.
  • Brain and behavior‎
  • 2018‎

Linking individual task performance to preceding, regional brain activation is an ongoing goal of neuroscientific research. Recently, it could be shown that the activation and connectivity within large-scale brain networks prior to task onset influence performance levels. More specifically, prestimulus default mode network (DMN) effects have been linked to performance levels in sensory near-threshold tasks, as well as cognitive tasks. However, it still remains uncertain how the DMN state preceding cognitive tasks affects performance levels when the period between task trials is long and flexible, allowing participants to engage in different cognitive states.


Temporal multivariate pattern analysis (tMVPA): A single trial approach exploring the temporal dynamics of the BOLD signal.

  • Luca Vizioli‎ et al.
  • Journal of neuroscience methods‎
  • 2018‎

fMRI provides spatial resolution that is unmatched by non-invasive neuroimaging techniques. Its temporal dynamics however are typically neglected due to the sluggishness of the hemodynamic signal.


Targeting the affective brain-a randomized controlled trial of real-time fMRI neurofeedback in patients with depression.

  • David M A Mehler‎ et al.
  • Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology‎
  • 2018‎

Functional magnetic resonance imaging neurofeedback (fMRI-NF) training of areas involved in emotion processing can reduce depressive symptoms by over 40% on the Hamilton Depression Rating Scale (HDRS). However, it remains unclear if this efficacy is specific to feedback from emotion-regulating regions. We tested in a single-blind, randomized, controlled trial if upregulation of emotion areas (NFE) yields superior efficacy compared to upregulation of a control region activated by visual scenes (NFS). Forty-three moderately to severely depressed medicated patients were randomly assigned to five sessions augmentation treatment of either NFE or NFS training. At primary outcome (week 12) no significant group mean HDRS difference was found (B = -0.415 [95% CI -4.847 to 4.016], p = 0.848) for the 32 completers (16 per group). However, across groups depressive symptoms decreased by 43%, and 38% of patients remitted. These improvements lasted until follow-up (week 18). Both groups upregulated target regions to a similar extent. Further, clinical improvement was correlated with an increase in self-efficacy scores. However, the interpretation of clinical improvements remains limited due to lack of a sham-control group. We thus surveyed effects reported for accepted augmentation therapies in depression. Data indicated that our findings exceed expected regression to the mean and placebo effects that have been reported for drug trials and other sham-controlled high-technology interventions. Taken together, we suggest that the experience of successful self-regulation during fMRI-NF training may be therapeutic. We conclude that if fMRI-NF is effective for depression, self-regulation training of higher visual areas may provide an effective alternative.


Estimation of the CSA-ODF using Bayesian compressed sensing of multi-shell HARDI.

  • Julio M Duarte-Carvajalino‎ et al.
  • Magnetic resonance in medicine‎
  • 2014‎

Diffusion MRI provides important information about the brain white matter structures and has opened new avenues for neuroscience and translational research. However, acquisition time needed for advanced applications can still be a challenge in clinical settings. There is consequently a need to accelerate diffusion MRI acquisitions.


Measuring structural-functional correspondence: spatial variability of specialised brain regions after macro-anatomical alignment.

  • Martin A Frost‎ et al.
  • NeuroImage‎
  • 2012‎

The central question of the relationship between structure and function in the human brain is still not well understood. In order to investigate this fundamental relationship we create functional probabilistic maps from a large set of mapping experiments and compare the location of functionally localised regions across subjects using different whole-brain alignment schemes. To avoid the major problems associated with meta-analysis approaches, all subjects are scanned using the same paradigms, the same scanner and the same analysis pipeline. We show that an advanced, curvature driven cortex based alignment (CBA) scheme largely removes macro-anatomical variability across subjects. Remaining variability in the observed spatial location of functional regions, thus, reflects the "true" functional variability, i.e. the quantified variability is a good estimator of the underlying structural-functional correspondence. After localising 13 widely studied functional areas, we found a large variability in the degree to which functional areas respect macro-anatomical boundaries across the cortex. Some areas, such as the frontal eye fields (FEF) are strongly bound to a macro-anatomical location. Fusiform face area (FFA) on the other hand, varies in its location along the length of the fusiform gyrus even though the gyri themselves are well aligned across subjects. Language areas were found to vary greatly across subjects whilst a high degree of overlap was observed in sensory and motor areas. The observed differences in functional variability for different specialised areas suggest that a more complete estimation of the structure-function relationship across the whole cortex requires further empirical studies with an expanded test battery.


Human Object-Similarity Judgments Reflect and Transcend the Primate-IT Object Representation.

  • Marieke Mur‎ et al.
  • Frontiers in psychology‎
  • 2013‎

Primate inferior temporal (IT) cortex is thought to contain a high-level representation of objects at the interface between vision and semantics. This suggests that the perceived similarity of real-world objects might be predicted from the IT representation. Here we show that objects that elicit similar activity patterns in human IT (hIT) tend to be judged as similar by humans. The IT representation explained the human judgments better than early visual cortex, other ventral-stream regions, and a range of computational models. Human similarity judgments exhibited category clusters that reflected several categorical divisions that are prevalent in the IT representation of both human and monkey, including the animate/inanimate and the face/body division. Human judgments also reflected the within-category representation of IT. However, the judgments transcended the IT representation in that they introduced additional categorical divisions. In particular, human judgments emphasized human-related additional divisions between human and non-human animals and between man-made and natural objects. hIT was more similar to monkey IT than to human judgments. One interpretation is that IT has evolved visual-feature detectors that distinguish between animates and inanimates and between faces and bodies because these divisions are fundamental to survival and reproduction for all primate species, and that other brain systems serve to more flexibly introduce species-dependent and evolutionarily more recent divisions.


Data on a cytoarchitectonic brain atlas: effects of brain template and a comparison to a multimodal atlas.

  • Mona Rosenke‎ et al.
  • Data in brief‎
  • 2017‎

The data presented here are related to the research article: "A cross-validated cytoarchitectonic atlas of the human ventral visual stream" in which we developed a cytoarchitectonic atlas of ventral visual cortex. Here, we provide two additional quantifications of this cytoarchitectonic atlas: First, we quantify the effect of brain template on cross-validation performance. The data show a comparison between cortex-based alignment to two templates: the postmortem average brain and the FreeSurfer average brain. Second, we quantify the relationship between this cytoarchitectonic atlas and a recently published multimodal atlas of the human brain (Glasser et al., 2016).


Increasing Lateralized Motor Activity in Younger and Older Adults using Real-time fMRI during Executed Movements.

  • Heather F Neyedli‎ et al.
  • Neuroscience‎
  • 2018‎

Neurofeedback training involves presenting an individual with a representation of their brain activity and instructing them to alter the activity using the feedback. One potential application of neurofeedback is for patients to alter neural activity to improve function. For example, there is evidence that greater laterality of movement-related activity is associated with better motor outcomes after stroke; so using neurofeedback to increase laterality may provide a novel route for improving outcomes. However, we must demonstrate that individuals can control relevant neurofeedback signals. Here, we performed two proof-of-concept studies, one in younger (median age: 26years) and one in older healthy volunteers (median age: 67.5years). The purpose was to determine if participants could manipulate laterality of activity between the motor cortices using real-time fMRI neurofeedback while performing simple hand movements. The younger cohort trained using their left and right hand, the older group trained using their left hand only. In both studies participants in a neurofeedback group were able to achieve more lateralized activity than those in a sham group (younger adults: F(1,23)=4.37, p<0.05; older adults: F(1,15)=9.08, p<0.01). Moreover, the younger cohort was able to maintain the lateralized activity for right hand movements once neurofeedback was removed. The older cohort did not maintain lateralized activity upon feedback removal, with the limitation being that they did not train with their right hand. The results provide evidence that neurofeedback can be used with executed movements to promote lateralized brain activity and thus is amenable for testing as a therapeutic intervention for patients following stroke.


High resolution data analysis strategies for mesoscale human functional MRI at 7 and 9.4T.

  • Valentin G Kemper‎ et al.
  • NeuroImage‎
  • 2018‎

The advent of ultra-high field functional magnetic resonance imaging (fMRI) has greatly facilitated submillimeter resolution acquisitions (voxel volume below (1mm³)), allowing the investigation of cortical columns and cortical depth dependent (i.e. laminar) structures in the human brain. Advanced data analysis techniques are essential to exploit the information in high resolution functional measures. In this article, we use recent, exemplary 9.4T human functional and anatomical data to review the advantages and disadvantages of (1) pooling high resolution data across regions of interest for cortical depth profile analysis, (2) pooling across cortical depths for mapping patches of cortex while discarding depth-dependent (i.e. columnar) effects, and (3) isotropic sampling without pooling to assess individual voxel's responses. A set of cortical depth meshes may be a solution to sampling information tangentially while keeping correspondence across depths. For quantitative analysis of the spatial organization in fine-grained structures, a cortical grid approach is advantageous. We further extend this general framework by combining it with a previously introduced cortical layer volume-preserving (equi-volume) approach. This framework can readily accommodate the research questions which allow for spatial smoothing within or across layers. We demonstrate and discuss that equi-volume sampling yields a slight advantage over equidistant sampling given the current limitations of fMRI voxel size, participant motion, coregistration and segmentation. Our 9.4T human anatomical and functional data indicate the advantage over lower fields including 7T and demonstrate the practical applicability of T2* and T2-weighted fMRI acquisitions.


Improving a probabilistic cytoarchitectonic atlas of auditory cortex using a novel method for inter-individual alignment.

  • Omer Faruk Gulban‎ et al.
  • eLife‎
  • 2020‎

The human superior temporal plane, the site of the auditory cortex, displays high inter-individual macro-anatomical variation. This questions the validity of curvature-based alignment (CBA) methods for in vivo imaging data. Here, we have addressed this issue by developing CBA+, which is a cortical surface registration method that uses prior macro-anatomical knowledge. We validate this method by using cytoarchitectonic areas on 10 individual brains (which we make publicly available). Compared to volumetric and standard surface registration, CBA+ results in a more accurate cytoarchitectonic auditory atlas. The improved correspondence of micro-anatomy following the improved alignment of macro-anatomy validates the superiority of CBA+ compared to CBA. In addition, we use CBA+ to align in vivo and postmortem data. This allows projection of functional and anatomical information collected in vivo onto the cytoarchitectonic areas, which has the potential to contribute to the ongoing debate on the parcellation of the human auditory cortex.


Validating layer-specific VASO across species.

  • Laurentius Renzo Huber‎ et al.
  • NeuroImage‎
  • 2021‎

Cerebral blood volume (CBV) has been shown to be a robust and important physiological parameter for quantitative interpretation of functional (f)MRI, capable of delivering highly localized mapping of neural activity. Indeed, with recent advances in ultra-high-field (≥7T) MRI hardware and associated sequence libraries, it has become possible to capture non-invasive CBV weighted fMRI signals across cortical layers. One of the most widely used approaches to achieve this (in humans) is through vascular-space-occupancy (VASO) fMRI. Unfortunately, the exact contrast mechanisms of layer-dependent VASO fMRI have not been validated for human fMRI and thus interpretation of such data is confounded. Here we validate the signal source of layer-dependent SS-SI VASO fMRI using multi-modal imaging in a rat model in response to neuronal activation (somatosensory cortex) and respiratory challenge (hypercapnia). In particular VASO derived CBV measures are directly compared to concurrent measures of total haemoglobin changes from high resolution intrinsic optical imaging spectroscopy (OIS). Quantified cortical layer profiling is demonstrated to be in agreement between VASO and contrast enhanced fMRI (using monocrystalline iron oxide nanoparticles, MION). Responses show high spatial localisation to layers of cortical processing independent of confounding large draining veins which can hamper BOLD fMRI studies, (depending on slice positioning). Thus, a cross species comparison is enabled using VASO as a common measure. We find increased VASO based CBV reactivity (3.1 ± 1.2 fold increase) in humans compared to rats. Together, our findings confirm that the VASO contrast is indeed a reliable estimate of layer-specific CBV changes. This validation study increases the neuronal interpretability of human layer-dependent VASO fMRI as an appropriate method in neuroscience application studies, in which the presence of large draining intracortical and pial veins limits neuroscientific inference with BOLD fMRI.


Mapping the evolution of regional brain network efficiency and its association with cognitive abilities during the first twenty-eight months of life.

  • Weixiong Jiang‎ et al.
  • Developmental cognitive neuroscience‎
  • 2023‎

Human brain undergoes rapid growth during the first few years of life. While previous research has employed graph theory to study early brain development, it has mostly focused on the topological attributes of the whole brain. However, examining regional graph-theory features may provide unique insights into the development of cognitive abilities. Utilizing a large and longitudinal rsfMRI dataset from the UNC/UMN Baby Connectome Project, we investigated the developmental trajectories of regional efficiency and evaluated the relationships between these changes and cognitive abilities using Mullen Scales of Early Learning during the first twenty-eight months of life. Our results revealed a complex and spatiotemporally heterogeneous development pattern of regional global and local efficiency during this age period. Furthermore, we found that the trajectories of the regional global efficiency at the left temporal occipital fusiform and bilateral occipital fusiform gyri were positively associated with cognitive abilities, including visual reception, expressive language, receptive language, and early learning composite scores (P < 0.05, FDR corrected). However, these associations were weakened with age. These findings offered new insights into the regional developmental features of brain topologies and their associations with cognition and provided evidence of ongoing optimization of brain networks at both whole-brain and regional levels.


AngoraPy: A Python toolkit for modeling anthropomorphic goal-driven sensorimotor systems.

  • Tonio Weidler‎ et al.
  • Frontiers in neuroinformatics‎
  • 2023‎

Goal-driven deep learning increasingly supplements classical modeling approaches in computational neuroscience. The strength of deep neural networks as models of the brain lies in their ability to autonomously learn the connectivity required to solve complex and ecologically valid tasks, obviating the need for hand-engineered or hypothesis-driven connectivity patterns. Consequently, goal-driven models can generate hypotheses about the neurocomputations underlying cortical processing that are grounded in macro- and mesoscopic anatomical properties of the network's biological counterpart. Whereas, goal-driven modeling is already becoming prevalent in the neuroscience of perception, its application to the sensorimotor domain is currently hampered by the complexity of the methods required to train models comprising the closed sensation-action loop. This paper describes AngoraPy, a Python library that mitigates this obstacle by providing researchers with the tools necessary to train complex recurrent convolutional neural networks that model the human sensorimotor system. To make the technical details of this toolkit more approachable, an illustrative example that trains a recurrent toy model on in-hand object manipulation accompanies the theoretical remarks. An extensive benchmark on various classical, 3D robotic, and anthropomorphic control tasks demonstrates AngoraPy's general applicability to a wide range of tasks. Together with its ability to adaptively handle custom architectures, the flexibility of this toolkit demonstrates its power for goal-driven sensorimotor modeling.


Characterisation of laminar and vascular spatiotemporal dynamics of CBV and BOLD signals using VASO and ME-GRE at 7T in humans.

  • Sebastian Dresbach‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2024‎

Interpretation of cortical laminar functional magnetic resonance imaging (fMRI) activity requires detailed knowledge of the spatiotemporal haemodynamic response across vascular compartments due to the well-known vascular biases (e.g. the draining veins). Further complications arise from the spatiotemporal hemodynamic response that differs depending on the duration of stimulation. This information is crucial for future studies using depth-dependent cerebral blood volume (CBV) measurements, which promise higher specificity for the cortical microvasculature than the blood oxygenation level dependent (BOLD) contrast. To date, direct information about CBV dynamics with respect to stimulus duration, cortical depth and vasculature is missing in humans. Therefore, we characterized the cortical depth-dependent CBV-haemodynamic responses across a wide set of stimulus durations with 0.9 mm isotropic spatial and 0.785 seconds effective temporal resolution in humans using slice-selective slab-inversion vascular space occupancy (SS-SI VASO). Additionally, we investigated signal contributions from macrovascular compartments using fine-scale vascular information from multi-echo gradient-echo (ME-GRE) data at 0.35 mm isotropic resolution. In total, this resulted in >7.5h of scanning per participant (n=5). We have three major findings: (I) While we could demonstrate that 1 second stimulation is viable using VASO, more than 12 seconds stimulation provides better CBV responses in terms of specificity to microvasculature, but durations beyond 24 seconds of stimulation may be wasteful for certain applications. (II) We observe that CBV responses show dilation patterns across the cortex. (III) While we found increasingly strong BOLD signal responses in vessel-dominated voxels with longer stimulation durations, we found increasingly strong CBV signal responses in vessel-dominated voxels only until 4 second stimulation durations. After 4 seconds, only the signal from non-vessel dominated voxels kept increasing. This might explain why CBV responses are more specific to the underlying neuronal activity for long stimulus durations.


Active head motion reduction in magnetic resonance imaging using tactile feedback.

  • Florian Krause‎ et al.
  • Human brain mapping‎
  • 2019‎

Head motion is a common problem in clinical as well as empirical (functional) magnetic resonance imaging applications, as it can lead to severe artefacts that reduce image quality. The scanned individuals themselves, however, are often not aware of their head motion. The current study explored whether providing subjects with this information using tactile feedback would reduce their head motion and consequently improve image quality. In a single session that included six runs, 24 participants performed three different cognitive tasks: (a) passive viewing, (b) mental imagery, and (c) speeded responses. These tasks occurred in two different conditions: (a) with a strip of medical tape applied from one side of the magnetic resonance head coil, via the participant's forehead, to the other side, and (b) without the medical tape being applied. Results revealed that application of medical tape to the forehead of subjects to provide tactile feedback significantly reduced both translational as well as rotational head motion. While this effect did not differ between the three cognitive tasks, there was a negative quadratic relationship between head motion with and without feedback. That is, the more head motion a subject produced without feedback, the stronger the motion reduction given the feedback. In conclusion, the here tested method provides a simple and cost-efficient way to reduce subjects' head motion, and might be especially beneficial when extensive head motion is expected a priori.


How skill expertise shapes the brain functional architecture: an fMRI study of visuo-spatial and motor processing in professional racing-car and naïve drivers.

  • Giulio Bernardi‎ et al.
  • PloS one‎
  • 2013‎

The present study was designed to investigate the brain functional architecture that subserves visuo-spatial and motor processing in highly skilled individuals. By using functional magnetic resonance imaging (fMRI), we measured brain activity while eleven Formula racing-car drivers and eleven 'naïve' volunteers performed a motor reaction and a visuo-spatial task. Tasks were set at a relatively low level of difficulty such to ensure a similar performance in the two groups and thus avoid any potential confounding effects on brain activity due to discrepancies in task execution. The brain functional organization was analyzed in terms of regional brain response, inter-regional interactions and blood oxygen level dependent (BOLD) signal variability. While performance levels were equal in the two groups, as compared to naïve drivers, professional drivers showed a smaller volume recruitment of task-related regions, stronger connections among task-related areas, and an increased information integration as reflected by a higher signal temporal variability. In conclusion, our results demonstrate that, as compared to naïve subjects, the brain functional architecture sustaining visuo-motor processing in professional racing-car drivers, trained to perform at the highest levels under extremely demanding conditions, undergoes both 'quantitative' and 'qualitative' modifications that are evident even when the brain is engaged in relatively simple, non-demanding tasks. These results provide novel evidence in favor of an increased 'neural efficiency' in the brain of highly skilled individuals.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: