Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

Early Release Science of the exoplanet WASP-39b with JWST NIRSpec PRISM.

  • Z Rustamkulov‎ et al.
  • Nature‎
  • 2023‎

Transmission spectroscopy1-3 of exoplanets has revealed signatures of water vapour, aerosols and alkali metals in a few dozen exoplanet atmospheres4,5. However, these previous inferences with the Hubble and Spitzer Space Telescopes were hindered by the observations' relatively narrow wavelength range and spectral resolving power, which precluded the unambiguous identification of other chemical species-in particular the primary carbon-bearing molecules6,7. Here we report a broad-wavelength 0.5-5.5 µm atmospheric transmission spectrum of WASP-39b8, a 1,200 K, roughly Saturn-mass, Jupiter-radius exoplanet, measured with the JWST NIRSpec's PRISM mode9 as part of the JWST Transiting Exoplanet Community Early Release Science Team Program10-12. We robustly detect several chemical species at high significance, including Na (19σ), H2O (33σ), CO2 (28σ) and CO (7σ). The non-detection of CH4, combined with a strong CO2 feature, favours atmospheric models with a super-solar atmospheric metallicity. An unanticipated absorption feature at 4 µm is best explained by SO2 (2.7σ), which could be a tracer of atmospheric photochemistry. These observations demonstrate JWST's sensitivity to a rich diversity of exoplanet compositions and chemical processes.


Mode switching kinetics produced by a naturally occurring mutation in the cytoplasmic loop of the human acetylcholine receptor epsilon subunit.

  • M Milone‎ et al.
  • Neuron‎
  • 1998‎

We describe the genetic and kinetic defects in a congenital myasthenic syndrome caused by heteroallelic mutations of the acetylcholine receptor (AChR) epsilon subunit gene. The mutations are an in-frame duplication of six residues in the long cytoplasmic loop (epsilon1254ins18) and a cysteine-loop null mutation (epsilonC128S). The epsilon1254 ins18 mutation causes mode switching in the kinetics of receptor activation in which three modes activate slowly and inactivate rapidly. The epsilon1245ins18-AChR at the endplate shows abnormally brief activation episodes during steady state agonist application and appears electrically silent during the synaptic response to acetylcholine. The phenotypic consequences are endplate AChR deficiency, simplification of the postsynaptic region, and compensatory expression of fetal AChR that restores electrical activity at the endplate and rescues the phenotype.


Large frequency potentiation induced by 2 Hz stimulation in the hippocampus of epileptic El mice.

  • Y Fueta‎ et al.
  • Brain research‎
  • 1998‎

El mouse has been found to be characteristics with hippocampal disinhibition, and has been suggested decrease in GABAergic synaptic transmission [Ono et al., Brain Res. 745 (1997) 165-172; Fueta et al. , Brain Res. 779 (1998) 324-328]. The efficacy of GABAergic synapses can be modulated in response to trains of low frequency stimulation. The frequency potentiation of a population spike (PS) and the field excitatory postsynaptic potential (fEPSP) induced by a low frequency stimulation (2 Hz for 15 s) were recorded for the CA3 subfield, and PS alone for the CA1 subfield and dentate gyrus. PS frequency potentiation was greater in El mice than in non-epileptic control ddY mice. Especially the CA3 subfield exhibited a high PS frequency potentiation (300+/-73%) compared to age-matched ddY mice (64+/-24%). However, EPSP frequency potentiation was similar in El and ddY mice. The degree of PS frequency potentiation in CA3 was decreased by the reduction of extracellular Ca2+ from 2 to 1 mM in both strains, suggesting presynaptic involvement. The potentiation in El mice was suppressed by AMPA/kainate type receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dion (CNQX), but more than half of the control value remained at 5 microM, whereas the potentiation in ddY mice was abolished at this concentration. N-methyl-d-aspartate (NMDA) type receptor antagonist 3-3 (2-carboxypiperazine-4-yl) propyl-1-phosphonate (10 microM; CPP) did not affect the potentiation. Bicuculline (5 microM), GABAA receptor antagonist, did not increase the amplitude of PS during stimulation but induced epileptic (multiple PSs) potentials. High PS frequency potentiation of El mice was mimicked to the degree of that in ddY mice by a low dose of GABAB receptor agonist baclofen (3 microM). The suppression by baclofen was partially reversed by the antagonist saclofen (500 microM). The large frequency potentiation in young El mice, which do not have seizure-susceptibility, indicates an intrinsic property in El mice. It is suggested that the high synchronization of CA3 neurons in El mice is due to a little activation of GABAB receptor activation and also to enhancement of non-NMDA type synaptic transmission.


Niemann-Pick C1 disease: correlations between NPC1 mutations, levels of NPC1 protein, and phenotypes emphasize the functional significance of the putative sterol-sensing domain and of the cysteine-rich luminal loop.

  • G Millat‎ et al.
  • American journal of human genetics‎
  • 2001‎

To obtain more information of the functional domains of the NPC1 protein, the mutational spectrum and the level of immunoreactive protein were investigated in skin fibroblasts from 30 unrelated patients with Niemann-Pick C1 disease. Nine of them were characterized by mild alterations of cellular cholesterol transport (the "variant" biochemical phenotype). The mutations showed a wide distribution to nearly all NPC1 domains, with a cluster (11/32) in a conserved NPC1 cysteine-rich luminal loop. Homozygous mutations in 14 patients and a phenotypically defined allele, combined with a new mutation, in a further 10 patients allowed genotype/phenotype correlations. Premature-termination-codon mutations, the three missense mutations in the sterol-sensing domain (SSD), and A1054T in the cysteine-rich luminal loop all occurred in patients with infantile neurological onset and "classic" (severe) cholesterol-trafficking alterations. By western blot, NPC1 protein was undetectable in the SSD missense mutations studied (L724P and Q775P) and essentially was absent in the A1054T missense allele. Our results thus enhance the functional significance of the SSD and demonstrate a correlation between the absence of NPC1 protein and the most severe neurological form. In the remaining missense mutations studied, corresponding to other disease presentations (including two adults with nonneurological disease), NPC1 protein was present in significant amounts of normal size, without clear-cut correlation with either the clinical phenotype or the "classic"/"variant" biochemical phenotype. Missense mutations in the cysteine-rich luminal loop resulted in a wide array of clinical and biochemical phenotypes. Remarkably, all five mutant alleles (I943M, V950M, G986S, G992R, and the recurrent P1007A) definitively correlated with the "variant" phenotype clustered within this loop, providing new insight on the functional complexity of the latter domain.


Late onset variants in Fabry disease: Results in high risk population screenings in Argentina.

  • G Serebrinsky‎ et al.
  • Molecular genetics and metabolism reports‎
  • 2015‎

Screening for Fabry disease (FD) in high risk populations yields a significant number of individuals with novel, ultra rare genetic variants in the GLA gene, largely without classic manifestations of FD. These variants often have significant residual α-galactosidase A activity. The establishment of the pathogenic character of previously unknown or rare variants is challenging but necessary to guide therapeutic decisions.


Congenital end-plate acetylcholinesterase deficiency caused by a nonsense mutation and an A-->G splice-donor-site mutation at position +3 of the collagenlike-tail-subunit gene (COLQ): how does G at position +3 result in aberrant splicing?

  • K Ohno‎ et al.
  • American journal of human genetics‎
  • 1999‎

Congenital end-plate acetylcholinesterase (AChE) deficiency (CEAD), the cause of a disabling myasthenic syndrome, arises from defects in the COLQ gene, which encodes the AChE triple-helical collagenlike-tail subunit that anchors catalytic subunits of AChE to the synaptic basal lamina. Here we describe a patient with CEAD with a nonsense mutation (R315X) and a splice-donor-site mutation at position +3 of intron 16 (IVS16+3A-->G) of COLQ. Because both A and G are consensus nucleotides at the +3 position of splice-donor sites, we constructed a minigene that spans exons 15-17 and harbors IVS16+3A-->G for expression in COS cells. We found that the mutation causes skipping of exon 16. The mutant splice-donor site of intron 16 harbors five discordant nucleotides (at -3, -2, +3, +4, and +6) that do not base-pair with U1 small-nuclear RNA (snRNA), the molecule responsible for splice-donor-site recognition. Versions of the minigene harboring, at either +4 or +6, nucleotides complementary to U1 snRNA restore normal splicing. Analysis of 1,801 native splice-donor sites reveals that presence of a G nucleotide at +3 is associated with preferential usage, at positions +4 to +6, of nucleotides concordant to U1 snRNA. Analysis of 11 disease-associated IVS+3A-->G mutations indicates that, on average, two of three nucleotides at positions +4 to +6 fail to base-pair, and that the nucleotide at +4 never base-pairs, with U1 snRNA. We conclude that, with G at +3, normal splicing generally depends on the concordance that residues at +4 to +6 have with U1 snRNA, but other cis-acting elements may also be important in assuring the fidelity of splicing.


Fundamental gating mechanism of nicotinic receptor channel revealed by mutation causing a congenital myasthenic syndrome.

  • H L Wang‎ et al.
  • The Journal of general physiology‎
  • 2000‎

We describe the genetic and kinetic defects in a congenital myasthenic syndrome due to the mutation epsilonA411P in the amphipathic helix of the acetylcholine receptor (AChR) epsilon subunit. Myasthenic patients from three unrelated families are either homozygous for epsilonA411P or are heterozygous and harbor a null mutation in the second epsilon allele, indicating that epsilonA411P is recessive. We expressed human AChRs containing wild-type or A411P epsilon subunits in 293HEK cells, recorded single channel currents at high bandwidth, and determined microscopic rate constants for individual channels using hidden Markov modeling. For individual wild-type and mutant channels, each rate constant distributes as a Gaussian function, but the spread in the distributions for channel opening and closing rate constants is greatly expanded by epsilonA411P. Prolines engineered into positions flanking residue 411 of the epsilon subunit greatly increase the range of activation kinetics similar to epsilonA411P, whereas prolines engineered into positions equivalent to epsilonA411 in beta and delta subunits are without effect. Thus, the amphipathic helix of the epsilon subunit stabilizes the channel, minimizing the number and range of kinetic modes accessible to individual AChRs. The findings suggest that analogous stabilizing structures are present in other ion channels, and possibly allosteric proteins in general, and that they evolved to maintain uniformity of activation episodes. The findings further suggest that the fundamental gating mechanism of the AChR channel can be explained by a corrugated energy landscape superimposed on a steeply sloped energy well.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: