Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 12 papers out of 12 papers

MicroRNA-222-3p/GNAI2/AKT axis inhibits epithelial ovarian cancer cell growth and associates with good overall survival.

  • Xiaodan Fu‎ et al.
  • Oncotarget‎
  • 2016‎

Ovarian carcinoma is the most lethal gynecologic tumor worldwide. Despite having developed molecular diagnostic tools and targeted therapies over the past few decades, patient survival is still quite poor. Numerous studies suggest that microRNAs are key regulators of many fundamental biological processes, including neoplasia and tumor progression. miR-222 is one of those miRNAs that has attracted much attention for its multiple roles in human diseases, especially cancer. The potential role of microRNAs in ovarian cancer has attracted much attention in recent years. Some of these microRNAs have been suggested as potential therapeutic targets for EOC patients. In this study, we sought to investigate the biologic functions of miR-222-3p in EOC carcinogenesis. Herein, we examined the expression of miR-222-3p in EOC patients, mouse models and cell lines, and found that higher expression of miR-222-3p was associated with better overall survival in EOC patients, and its level was negatively correlated with tumor growth in vivo. Furthermore, in-vitro experiments indicated that miR-222-3p inhibited EOC cell proliferation and migration, and decreased the phosphorylation of AKT. We identified GNAI2 as a target of miR-222-3p. We also found that GNAI2 promoted EOC cell proliferation, and is an activator of the PI3K/AKT pathway. We describe the characterization of a novel regulatory axis in ovarian cancer cells, miR-222-3p/GNAI2/AKT and its potential application as a therapeutic target for EOC patients.


Expression status and clinical significance of lncRNA APPAT in the progression of atherosclerosis.

  • Fanming Meng‎ et al.
  • PeerJ‎
  • 2018‎

Long non-coding RNAs (lncRNAs) have been reported to modulate cardiovascular diseases, and expression dynamics of lncRNAs in the bloodstream were proposed to be potential biomarkers for clinical diagnosis. However, few cardiovascular diseases-related circulating lncRNAs were identified and their prediction power has not been investigated in depth. Here we report a new circulating lncRNA, atherosclerotic plaque pathogenesis associated transcript (APPAT), and evaluated its role and predicting ability in atherosclerotic development.


Influenza D virus Matrix protein 1 restricts the type I interferon response by degrading TRAF6.

  • Zhaoshan Chen‎ et al.
  • Virology‎
  • 2022‎

Influenza D virus (IDV) is an emerged virus that was first isolated in 2011 in the United States. Evidence suggests that IDV has broad host tropism and zoonotic potential. However, the immune evasion mechanism of IDV has not been explored. In the present study, we identified that the Matrix protein 1 (M1) of IDV is a negative regulator of virus- or RIG-IN-triggered type I interferon induction. Co-immunoprecipitation experiments revealed that M1 specifically interacts with tumor necrosis factor receptor associated factor 6 (TRAF6) and potentiates its proteasomal degradation by promoting K48-linked polyubiquitination. Moreover, we discovered that E3 ubiquitin ligase KEAP1 is recruited by M1 to catalyze K48-linked polyubiquitination of TRAF6, and promotes TRAF6 destabilization. Consequently, the degradation cascade mediated by M1 blocks RIG-I-TRAF6 mediated interferon signaling. Taken together, our findings reveal a negative regulatory role for the IDV M1 in the type І interferon pathway.


MicroRNA-200c-targeted contactin 1 facilitates the replication of influenza A virus by accelerating the degradation of MAVS.

  • Shuai Xu‎ et al.
  • PLoS pathogens‎
  • 2022‎

Influenza A viruses (IAVs) continuously challenge the poultry industry and human health. Elucidation of the host factors that modulate the IAV lifecycle is vital for developing antiviral drugs and vaccines. In this study, we infected A549 cells with IAVs and found that host protein contactin-1 (CNTN1), a member of the immunoglobulin superfamily, enhanced viral replication. Bioinformatic prediction and experimental validation indicated that the expression of CNTN1 was reduced by microRNA-200c (miR-200c) through directly targeting. We further showed that CNTN1-modulated viral replication in A549 cells is dependent on type I interferon signaling. Co-immunoprecipitation experiments revealed that CNTN1 specifically interacts with MAVS and promotes its proteasomal degradation by removing its K63-linked ubiquitination. Moreover, we discovered that the deubiquitinase USP25 is recruited by CNTN1 to catalyze the deubiquitination of K63-linked MAVS. Consequently, the CNTN1-induced degradation cascade of MAVS blocked RIG-I-MAVS-mediated interferon signaling, leading to enhanced viral replication. Taken together, our data reveal novel roles of CNTN1 in the type I interferon pathway and regulatory mechanism of IAV replication.


Expression of Mipu1 in response to myocardial infarction in rats.

  • Guiliang Wang‎ et al.
  • International journal of molecular sciences‎
  • 2009‎

Myocardial ischemic preconditioning up-regulated protein 1 (Mipu1) was cloned in our laboratory. Male Wistar rats were subjected to left anterior coronary artery ligation and sham-operation and sacrificed at 1 h, 3 h, 6 h, 12 h, 24 h, 3 d or 5 d after ligation. Expression of Mipu1 mRNA and protein were assessed by Northern blotting, real-time quantitative RT-PCR, In Situ hybridization and Western blotting. Expression of Mipu1 was up-regulated at 3 h and lasted to 12 h with a peak at 6 h. Mipu1 mRNA and protein signals express in the endothelium and myocardium in normal and infarcted heart, mainly in infarcted zone. Fluorescent immunocytochemistry showed that Mipu1 protein was localized to the nuclei of H9c2 myogenic cells and was upregulated after the cells being exposed to H(2)O(2). These observations indicates that Mipu1 may play a role in maintaining vascular homeostasis and protecting the myogenic cells from being injured by ischemia-reperfusion or oxidation stress.


microRNA-352 regulates collateral vessel growth induced by elevated fluid shear stress in the rat hind limb.

  • Yinglu Guan‎ et al.
  • Scientific reports‎
  • 2017‎

Although collateral vessel growth is distinctly enhanced by elevated fluid shear stress (FSS), the underlying regulatory mechanism of this process remains incompletely understood. Recent studies have shown that microRNAs (miRNAs) play a pivotal role in vascular development, homeostasis and a variety of diseases. Therefore, this study was designed to identify miRNAs involved in elevated FSS-induced collateral vessel growth in rat hind limbs. A side-to-side arteriovenous (AV) shunt was created between the distal stump of one of the bilaterally occluded femoral arteries and the accompanying vein. The miRNA array profile showed 94 differentially expressed miRNAs in FSS-stressed collaterals including miRNA-352 which was down-regulated. Infusion of antagomir-352 increased the number and proliferation of collateral vessels and promoted collateral flow restoration in a model of rat hind limb ligation. In cell culture studies, the miR-352 inhibitor increased endothelial proliferation, migration and tube formation. In addition, antagomir-352 up-regulated the expression of insulin-like growth factor II receptor (IGF2R), which may play a part in the complex pathway leading to arterial growth. We conclude that enhanced collateral vessel growth is controlled by miRNAs, among which miR-352 is a novel candidate that negatively regulates arteriogenesis, meriting additional studies to unravel the pathways leading to improved collateral circulation.


Krüppel-like factor 4 inhibits the expression of interleukin-1 beta in lipopolysaccharide-induced RAW264.7 macrophages.

  • Junwen Liu‎ et al.
  • FEBS letters‎
  • 2012‎

RAW264.7 macrophages and human peripheral blood mononuclear cells were treated with LPS to determine the expression of KLF4 and release of IL-1β. A full-length cDNA or short interference RNA of KLF4 was transfected into RAW264.7 macrophages; the expression and release of IL-1β were analyzed. The transcription and DNA binding activities of KLF4 to the IL-1β promoter were detected further. The results showed LPS treatment resulted in the increase of KLF4 level and IL-1β release; KLF4 overexpression decreased the expression of IL-1β, while KLF4 inhibition increased the expression of IL-1β; overexpression of KLF4 promoted the DNA binding activity of KLF4 to the IL-1β promoter and attenuated the transcription of IL-1β promoter, indicating an important role of KLF4 in regulating expression of IL-1β.


HDAC5, negatively regulated by miR-148a-3p, promotes colon cancer cell migration.

  • Chunli OuYang‎ et al.
  • Cancer science‎
  • 2022‎

Histone deacetylases (HDACs) are involved in many processes including tumor cell growth and proliferation and regulation of gene expression. To clarify the role of class IIa HDACs in the metastasis of colon adenocarcinoma, we used the class IIa HDAC inhibitor TMP269 and found that it effectively inhibited the migration ability of colon adenocarcinoma cells. Next, we silenced the member of class IIa HDACs and confirmed that the migratory ability of colon adenocarcinoma cells was significantly inhibited by silencing HDAC5 or HDAC7. HDAC5 plays a variety of roles in human cancers. Here, we examined the role of HDAC5 in colon adenocarcinoma. The results indicated that HDAC5 was highly expressed in tumor tissues and negatively correlated with the expression of miR-148a-3p. Moreover, the expression of HDAC5 was correlated with tumor progression. HDAC5 markedly increased the invasion and migration of cancer cells in vitro, an effect that could be inhibited by overexpression of miR-148a-3p. Following an intraperitoneal injection of colon adenocarcinoma cells in athymic nude mice, HDAC5 promoted tumor implant. Together, these findings showed that HDAC5 overexpression in colon adenocarcinoma is consistent with tumor progression and tumor cell migration and the impact of HDAC5 overexpression is reduced by miR-148a-3p.


Protective effect of soluble eggshell membrane protein hydrolysate on cardiac ischemia/reperfusion injury.

  • Tao Yang‎ et al.
  • Food & nutrition research‎
  • 2015‎

Soluble eggshell membrane protein (SEP) has been proved to hold the antioxidant activity. The functional role of SEP on cardioprotection was investigated in vivo and in vitro.


Definition and review on a category of long non-coding RNA: Atherosclerosis-associated circulating lncRNA (ASCLncRNA).

  • Shanshan Lu‎ et al.
  • PeerJ‎
  • 2020‎

Atherosclerosis (AS) is one of the most common cardiovascular system diseases which seriously affects public health in modern society. Finding potential biomarkers in the complicated pathological progression of AS is of great significance for the prevention and treatment of AS. Studies have shown that long noncoding RNAs (lncRNAs) can be widely involved in the regulation of many physiological processes, and have important roles in different stages of AS formation. LncRNAs can be secreted into the circulatory system through exosomes, microvesicles, and apoptotic bodies. Recently, increasing studies have been focused on the relationships between circulating lncRNAs and AS development. The lncRNAs in circulating blood are expected to be new non-invasive diagnostic markers for monitoring the progression of AS. We briefly reviewed the previously reported lncRNA transcripts which related to AS development and detectable in circulating blood, including ANRIL, SENCR, CoroMarker, LIPCAR, HIF1α-AS1, LncRNA H19, APPAT, KCNQ1OT1, LncPPARδ, LincRNA-p21, MALAT1, MIAT, and UCA1. Further researches and a definition of atherosclerosis-associated circulating lncRNA (ASCLncRNA) were also discussed.


Genetic mutational analysis of pediatric acute lymphoblastic leukemia from a single center in China using exon sequencing.

  • Honghong Zhang‎ et al.
  • BMC cancer‎
  • 2020‎

Acute lymphoblastic leukemia (ALL), the most common childhood malignancy, is characterized by recurring structural chromosomal alterations and genetic alterations, whose detection is critical in diagnosis, risk stratification and prognostication. However, the genetic mechanisms that give rise to ALL remain poorly understood.


Leverage of nuclease-deficient CasX for preventing pathological angiogenesis.

  • Haote Han‎ et al.
  • Molecular therapy. Nucleic acids‎
  • 2023‎

Gene editing with a CRISPR/Cas system is a novel potential strategy for treating human diseases. Pharmacological inhibition of phosphoinositide 3-kinase (PI3K) δ suppresses retinal angiogenesis in a mouse model of oxygen-induced retinopathy. Here we show that an innovative system of adeno-associated virus (AAV)-mediated CRISPR/nuclease-deficient (d)CasX fused with the Krueppel-associated box (KRAB) domain is leveraged to block (81.2% ± 6.5%) in vitro expression of p110δ, the catalytic subunit of PI3Kδ, encoded by Pik3cd. This CRISPR/dCasX-KRAB (4, 269 bp) system is small enough to be fit into a single AAV vector. We then document that recombinant AAV serotype (rAAV)1 efficiently transduces vascular endothelial cells from pathologic retinal vessels, which show high expression of p110δ; furthermore, we demonstrate that blockade of retinal p110δ expression by intravitreally injected rAAV1-CRISPR/dCasX-KRAB targeting the Pik3cd promoter prevents (32.1% ± 5.3%) retinal p110δ expression as well as pathological retinal angiogenesis in a mouse model of oxygen-induced retinopathy. These data establish a strong foundation for treating pathological angiogenesis by AAV-mediated CRISPR interference with p110δ expression.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: