Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Selective Laminin-Directed Differentiation of Human Induced Pluripotent Stem Cells into Distinct Ocular Lineages.

  • Shun Shibata‎ et al.
  • Cell reports‎
  • 2018‎

The extracellular matrix plays a key role in stem cell maintenance, expansion, and differentiation. Laminin, a basement membrane protein, is a widely used substrate for cell culture including the growth of human induced pluripotent stem cells (hiPSCs). Here, we show that different isoforms of laminin lead to the selective differentiation of hiPSCs into different eye-like tissues. Specifically, the 211 isoform of the E8 fragment of laminin (LN211E8) promotes differentiation into neural crest cells via Wnt activation, whereas LN332E8 promotes differentiation into corneal epithelial cells. The immunohistochemical distributions of these laminin isoforms in the developing mouse eye mirrors the hiPSC type that was induced in vitro. Moreover, LN511E8 enables generation of dense hiPSC colonies due to actomyosin contraction, which in turn led to cell density-dependent YAP inactivation and subsequent retinal differentiation in colony centers. Thus, distinct laminin isoforms determine the fate of expanded hiPSCs into eye-like tissues.


Laminin-guided highly efficient endothelial commitment from human pluripotent stem cells.

  • Ryo Ohta‎ et al.
  • Scientific reports‎
  • 2016‎

Obtaining highly purified differentiated cells via directed differentiation from human pluripotent stem cells (hPSCs) is an essential step for their clinical application. Among the various conditions that should be optimized, the precise role and contribution of the extracellular matrix (ECM) during differentiation are relatively unclear. Here, using a short fragment of laminin 411 (LM411-E8), an ECM predominantly expressed in the vascular endothelial basement membrane, we demonstrate that the directed switching of defined ECMs robustly yields highly-purified (>95%) endothelial progenitor cells (PSC-EPCs) without cell sorting from hPSCs in an integrin-laminin axis-dependent manner. Single-cell RNA-seq analysis revealed that LM411-E8 resolved intercellular transcriptional heterogeneity and escorted the progenitor cells to the appropriate differentiation pathway. The PSC-EPCs gave rise to functional endothelial cells both in vivo and in vitro. We therefore propose that sequential switching of defined matrices is an important concept for guiding cells towards desired fate.


Cell-Type-Specific Adhesiveness and Proliferation Propensity on Laminin Isoforms Enable Purification of iPSC-Derived Corneal Epithelium.

  • Shun Shibata‎ et al.
  • Stem cell reports‎
  • 2020‎

A treatment for intractable diseases is expected to be the replacement of damaged tissues with products from human induced pluripotent stem cells (hiPSCs). Target cell purification is a critical step for realizing hiPSC-based therapy. Here, we found that hiPSC-derived ocular cell types exhibited unique adhesion specificities and growth characteristics on distinct E8 fragments of laminin isoforms (LNE8s): hiPSC-derived corneal epithelial cells (iCECs) and other non-CECs rapidly adhered preferentially to LN332/411/511E8 and LN211E8, respectively, through differential expression of laminin-binding integrins. Furthermore, LN332E8 promoted epithelial cell proliferation but not that of the other eye-related cells, leading to non-CEC elimination by cell competition. Combining these features with magnetic sorting, highly pure iCEC sheets were fabricated. Thus, we established a simple method for isolating iCECs from various hiPSC-derived cells without using fluorescence-activated cell sorting. This study will facilitate efficient manufacture of iCEC sheets for corneal disease treatment and provide insights into target cell-specific scaffold selection.


Laminin γ1 C-terminal Glu to Gln mutation induces early postimplantation lethality.

  • Daiji Kiyozumi‎ et al.
  • Life science alliance‎
  • 2018‎

Laminin-integrin interactions regulate various adhesion-dependent cellular processes. γ1C-Glu, the Glu residue in the laminin γ1 chain C-terminal tail, is crucial for the binding of γ1-laminins to several integrin isoforms. Here, we investigated the impact of γ1C Glu to Gln mutation on γ1-laminin binding to all possible integrin partners in vitro, and found that the mutation specifically ablated binding to α3, α6, and α7 integrins. To examine the physiological significance of γ1C-Glu, we generated a knock-in allele, Lamc1 EQ , in which the γ1C Glu to Gln mutation was introduced. Although Lamc1 EQ/EQ homozygotes developed into blastocysts and deposited laminins in their basement membranes, they died just after implantation because of disordered extraembryonic development. Given the impact of the Lamc1 EQ allele on embryonic development, we developed a knock-in mouse strain enabling on-demand introduction of the γ1C Glu to Gln mutation by the Cre-loxP system. The present study has revealed a crucial role of γ1C-Glu-mediated integrin binding in postimplantation development and provides useful animal models for investigating the physiological roles of laminin-integrin interactions in vivo.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: