Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 33 papers

Purinergic receptors are involved in tooth-pulp evoked nocifensive behavior and brainstem neuronal activity.

  • Kazunori Adachi‎ et al.
  • Molecular pain‎
  • 2010‎

To evaluate whether P2X receptors are involved in responses to noxious pulp stimulation, the P2X3 and P2X2/3 receptor agonist α,β-methyleneATP (α,β-meATP) was applied to the molar tooth pulp and nocifensive behavior and extracellular-signal regulated kinase (ERK) phosphorylation in trigeminal spinal subnucleus caudalis (Vc), trigeminal spinal subnucleus interpolaris (Vi), upper cervical spinal cord (C1/C2) and paratrigeminal nucleus (Pa5) neurons were analyzed in rats.


Involvement of ERK phosphorylation in brainstem neurons in modulation of swallowing reflex in rats.

  • Takanori Tsujimura‎ et al.
  • The Journal of physiology‎
  • 2009‎

In order to evaluate the neuronal mechanisms underlying functional abnormalities of swallowing in orofacial pain patients, this study investigated the effects of noxious orofacial stimulation on the swallowing reflex, phosphorylated extracellular signal-regulated kinase (pERK) and gamma-aminobutyric acid (GABA) immunohistochemical features in brainstem neurons, and also analysed the effects of brainstem lesioning and of microinjection of GABA receptor agonist or antagonist into the nucleus tractus solitarii (NTS) on the swallowing reflex in anaesthetized rats. The swallowing reflex elicited by topical administration of distilled water to the pharyngolaryngeal region was inhibited after capsaicin injection into the facial (whisker pad) skin or lingual muscle. The capsaicin-induced inhibitory effect on the swallowing reflex was itself depressed after the intrathecal administration of MAPK kinase (MEK) inhibitor. No change in the capsaicin-induced inhibitory effect was observed after trigeminal spinal subnucleus caudalis lesioning, but the inhibitory effect was diminished by paratrigeminal nucleus (Pa5) lesioning. Many pERK-like immunoreactive neurons in the NTS showed GABA immunoreactivity. The local microinjection of the GABA(A) receptor agonist muscimol into the NTS produced a significant reduction in swallowing reflex, and the capsaicin-induced depression of the swallowing reflex was abolished by microinjection of the GABA(A) receptor antagonist bicuculline into the NTS. The present findings suggest that facial skin-NTS, lingual muscle-NTS and lingual muscle-Pa5-NTS pathways are involved in the modulation of swallowing reflex by facial and lingual pain, respectively, and that the activation of GABAergic NTS neurons is involved in the inhibition of the swallowing reflex following noxious stimulation of facial and intraoral structures.


Long-term neuroplasticity of the face primary motor cortex and adjacent somatosensory cortex induced by tooth loss can be reversed following dental implant replacement in rats.

  • Limor Avivi-Arber‎ et al.
  • The Journal of comparative neurology‎
  • 2015‎

Tooth loss is common, and exploring the neuroplastic capacity of the face primary motor cortex (face-M1) and adjacent primary somatosensory cortex (face-S1) is crucial for understanding how subjects adapt to tooth loss and their prosthetic replacement. The aim was to test if functional reorganization of jaw and tongue motor representations in the rat face-M1 and face-S1 occurs following tooth extraction, and if subsequent dental implant placement can reverse this neuroplasticity. Rats (n = 22) had the right maxillary molar teeth extracted under local and general anesthesia. One month later, seven rats had dental implant placement into healed extraction sites. Naive rats (n = 8) received no surgical treatment. Intracortical microstimulation (ICMS) and recording of evoked jaw and tongue electromyographic responses were used to define jaw and tongue motor representations at 1 month (n = 8) or 2 months (n = 7) postextraction, 1 month postimplant placement, and at 1-2 months in naive rats. There were no significant differences across study groups in the onset latencies of the ICMS-evoked responses (P > 0.05), but in comparison with naive rats, tooth extraction caused a significant (P < 0.05) and sustained (1-2 months) decreased number of ICMS-defined jaw and tongue sites within face-M1 and -S1, and increased thresholds of ICMS-evoked responses in these sites. Furthermore, dental implant placement reversed the extraction-induced changes in face-S1, and in face-M1 the number of jaw sites even increased as compared to naive rats. These novel findings suggest that face-M1 and adjacent face-S1 may play a role in adaptive mechanisms related to tooth loss and their replacement with dental implants.


Canadian Orofacial Pain Team workshop report on the global year against orofacial pain.

  • Gilles J Lavigne‎ et al.
  • Pain research & management‎
  • 2015‎

The year 2013-2014 has been designated the Global Year Against Orofacial Pain by the International Association for the Study of Pain. Accordingly, a multidisciplinary Canadian and international group of clinical, research and knowledge-transfer experts attended a workshop in Montreal, Quebec. The workshop had two aims: to identify new pathways for innovative diagnosis and management of chronic orofacial pain states; and to identify opportunities for further collaborative orofacial pain research and education in Canada. Three topics related to chronic orofacial pain were explored: biomarkers and pain signatures for chronic orofacial pain; misuse of analgesic and opioid pain medications for managing chronic orofacial pain; and complementary alternative medicine, topical agents and the role of stress in chronic orofacial pain. It was determined that further research is needed to: identify biomarkers of chronic orofacial post-traumatic neuropathic pain, with a focus on psychosocial, physiological and chemical-genetic factors; validate the short- and long-term safety (i.e., no harm to health, and avoidance of misuse and addiction) of opioid use for two distinct conditions (acute and chronic orofacial pain, respectively); and promote the use of topical medications as an alternative treatment in dentistry, and further document the benefits and safety of complementary and alternative medicine, including stress management, in dentistry. It was proposed that burning mouth syndrome, a painful condition that is not uncommon and affects mainly postmenopausal women, should receive particular attention.


Brain-derived neurotrophic factor enhances the excitability of small-diameter trigeminal ganglion neurons projecting to the trigeminal nucleus interpolaris/caudalis transition zone following masseter muscle inflammation.

  • Mamoru Takeda‎ et al.
  • Molecular pain‎
  • 2013‎

The trigeminal subnuclei interpolaris/caudalis transition zones (Vi/Vc) play an important role in orofacial deep pain, however, the role of primary afferent projections to the Vi/Vc remains to be determined. This study investigated the functional significance of hyperalgesia to the brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (trkB) signaling system in trigeminal ganglion (TRG) neurons projecting to the Vi/Vc transition zone following masseter muscle (MM) inflammation.


Central sensitization and MAPKs are involved in occlusal interference-induced facial pain in rats.

  • Ye Cao‎ et al.
  • The journal of pain‎
  • 2013‎

We previously developed a rat dental occlusal interference model of facial pain that was produced by bonding a crown onto the right maxillary first molar and was reflected in sustained facial hypersensitivity that was suggestive of the involvement of central sensitization mechanisms. The aim of the present study was to investigate potential central mechanisms involved in the occlusal interference-induced facial hypersensitivity. A combination of behavioral, immunohistochemical, Western blot, and electrophysiological recording procedures was used in 98 male adult Sprague Dawley rats that either received the occlusal interference or were sham-operated or naive rats. Immunohistochemically labeled astrocytes and microglia in trigeminal subnucleus caudalis (Vc) showed morphological changes indicative of astrocyte and microglial activation after the occlusal interference. Prolonged upregulation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) was also documented in Vc after placement of the occlusal interference and was expressed in both neurons and glial cells at time points when rats showed peak mechanical facial hypersensitivity. The intrathecal administration of the p38 MAPK inhibitor SB203580 to the medulla significantly inhibited the occlusal interference-induced hypersensitivity, and the ERK inhibitor PD98059 produced an even stronger effect. Central sensitization of functionally identified Vc nociceptive neurons following placement of the occlusal interference was also documented by extracellular electrophysiological recordings, and intrathecal administration of PD98059 could reverse the neuronal central sensitization. These novel findings suggest that central mechanisms including central sensitization of trigeminal nociceptive neurons and non-neuronal processes involving MAPKs play significant roles in the production of occlusal interference-induced facial pain.


Effects of acetazolamide on transient K+ currents and action potentials in nodose ganglion neurons of adult rats.

  • Shigeji Matsumoto‎ et al.
  • CNS neuroscience & therapeutics‎
  • 2011‎

The aim of the present study was to determine whether acetazolamide (AZ) contributes to the inhibition of the fast inactivating transient K(+) current (I(A) ) in adult rat nodose ganglion (NG) neurons. We have previously shown that pretreatment with either AZ or 4-AP attenuated or blocked the CO(2) -induced inhibition of slowly adapting pulmonary stretch receptors in in vivo experiments. The patch-clamp experiments were performed by using the isolated NG neurons. In addition to this, the RT-PCR of mRNA and the expression of voltage-gated K(+) (Kv) 1.4, Kv 4.1, Kv 4.2, and Kv 4.3 channel proteins from nodose ganglia were examined. We used NG neurons sensitive to the 1 mM AZ application. The application of 1 mM AZ inhibited the I(A) by approximately 27% and the additional application of 4-AP (1 mM) further inhibited I(A) by 48%. The application of 0.1 μM α-dendrotoxin (α-DTX), a slow inactivating transient K(+) current (I(D) ) blocker, inhibited the baseline I(A) by approximately 27%, and the additional application of 1 mM AZ further decreased the I(A) by 51%. In current clamp experiments, AZ application (1 mM) increased the number of action potentials due to the decreased duration of the depolarizing phase of action potentials and/or due to a reduction in the resting membrane potential. Four voltage-gated K(+) channel proteins were present, and most (80-90%) of the four Kv channels immunoreactive neurons showed the co-expression of carbonic anhydrase-II (CA-II) immunoreactivity. These results indicate that the application of AZ causes the reduction in I(A) via the inhibition of four voltage-gated K(+) channel (Kv) proteins without affecting I(D).


Pregabalin suppresses nociceptive behavior and central sensitization in a rat trigeminal neuropathic pain model.

  • Ye Cao‎ et al.
  • The journal of pain‎
  • 2013‎

The aim of this study was to determine whether pregabalin affects nociceptive behavior and central sensitization in a trigeminal neuropathic pain model. A partial infraorbital nerve transection (p-IONX) or sham operation was performed in adult male rats. Nociceptive withdrawal thresholds were tested with von Frey filaments applied to the bilateral vibrissal pads pre- and postoperatively. On postoperative day 7, the behavioral assessment was conducted before and at 30, 60, 120, and 180 minutes after and 24 hours after pregabalin (.1, 1, 10, 100 mg/kg intraperitoneally) or saline injection. The effects of pregabalin or saline were also examined on the mechanoreceptive field and response properties of nociceptive neurons recorded in the medullary dorsal horn at postoperative days 7 to 10. Reduced withdrawal thresholds reflecting bilateral mechanical allodynia were observed in p-IONX rats until postoperative day 28, but not in sham-operated rats. At postoperative day 7, pregabalin significantly and dose-dependently reversed the reduced mechanical withdrawal thresholds in p-IONX rats. Pregabalin also attenuated central sensitization of the neurons, as reflected in reversal of their reduced activation threshold, increased responses to pinch/pressure, and enhanced stimulus-response function. This study provides the first documentation that pregabalin attenuates the mechanical allodynia and central sensitization that characterize this trigeminal neuropathic pain model, and supports its clinical use for treating craniofacial neuropathic pain.


Involvement of AMPA receptor GluR2 and GluR3 trafficking in trigeminal spinal subnucleus caudalis and C1/C2 neurons in acute-facial inflammatory pain.

  • Makiko Miyamoto‎ et al.
  • PloS one‎
  • 2012‎

To evaluate the involvement of trafficking of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) GluR2 and GluR3 subunits in an acute inflammatory orofacial pain, we analyzed nocifensive behavior, phosphorylated extracellular signal-regulated kinase (pERK) and Fos expression in Vi/Vc, Vc and C1/C2 in GluR2 delta7 knock-in (KI), GluR3 delta7 KI mice and wild-type mice. We also studied Vc neuronal activity to address the hypothesis that trafficking of GluR2 and GluR3 subunits plays an important role in Vi/Vc, Vc and C1/C2 neuronal activity associated with orofacial inflammation in these mice. Late nocifensive behavior was significantly depressed in GluR2 delta7 KI and GluR3 delta7 KI mice. In addition, the number of pERK-immunoreactive (IR) cells was significantly decreased bilaterally in the Vi/Vc, Vc and C1/C2 in GluR2 delta7 KI and GluR3 delta7 KI mice compared to wild-type mice at 40 min after formalin injection, and was also significantly smaller in GluR3 delta7 KI compared to GluR2 delta7 KI mice. The number of Fos protein-IR cells in the ipsilateral Vi/Vc, Vc and C1/C2 was also significantly smaller in GluR2 delta7 KI and GluR3 delta7 KI mice compared to wild-type mice 40 min after formalin injection. Nociceptive neurons functionally identified as wide dynamic range neurons in the Vc, where pERK- and Fos protein-IR cell expression was prominent, showed significantly lower spontaneous activity in GluR2 delta7 KI and GluR3 delta7 KI mice than wild-type mice following formalin injection. These findings suggest that GluR2 and GluR3 trafficking is involved in the enhancement of Vi/Vc, Vc and C1/C2 nociceptive neuronal excitabilities at 16-60 min following formalin injection, resulting in orofacial inflammatory pain.


Organization of pERK-immunoreactive cells in trigeminal spinal nucleus caudalis and upper cervical cord following capsaicin injection into oral and craniofacial regions in rats.

  • Noboru Noma‎ et al.
  • The Journal of comparative neurology‎
  • 2008‎

To define the somatotopic arrangement of neurons in the trigeminal spinal subnucleus caudalis and upper cervical cord activated by acute noxious stimulation of various orofacial sites, pERK expression was analyzed in these neurons. After capsaicin injection into the tongue, lower gum, upper and lower lips, or mental region, pERK-like immunoreactive (pERK-LI) cells were distributed mainly in the dorsal half of the trigeminal spinal nucleus interporalis (Vi) and caudalis (Vc) transition zone (Vi/Vc zone), middle Vc, and Vc and upper cervical cord transition zone (Vc/C2 zone). pERK-LI cells were distributed throughout the dorsal to ventral portion of the Vi/Vc zone, middle Vc, and Vc/C2 zone following capsaicin injection into the anterior hard palate, upper gum, buccal mucosa, or vibrissal pad and in the ventral portion of the Vi/Vc zone, middle Vc, and Vc/C2 zone following snout, ophthalmic, or ocular injection of capsaicin. The rostrocaudal distribution area of pERK-LI cells was more extensive from the Vi/Vc zone to the Vc/C2 zone after intraoral injection than that after facial injection, and the rostrocaudal distribution of pERK-LI cells from the Vi/Vc zone to the Vc/C2 zone had a somatotopic arrangement, with the snout being represented most rostrally and ophthalmic, ocular, or mental regions represented most caudally. These findings suggest that the pERK-LI cells expressed from the Vi/Vc zone to the Vc/C2 zone following injection of capsaicin in facial and intraoral structures may be differentially involved in pain perception in facial and intraoral sites.


TRPA1s act as chemosensors but not as cold sensors or mechanosensors to trigger the swallowing reflex in rats.

  • Mohammad Zakir Hossain‎ et al.
  • Scientific reports‎
  • 2022‎

We examined the role of TRPA1s in triggering the swallowing reflex. TRPA1s predominantly localized on thin nerve fibers and fibroblast-like cells in swallowing-related regions and on small to medium-sized superior laryngeal nerve-afferents in the nodose-petrosal-jugular ganglionic complex. Topical application of a TRPA1 agonist, allyl isothiocyanate (AITC), dose-dependently triggered swallowing reflexes. Prior topical application of a TRPA1 antagonist significantly attenuated the AITC-induced reflexes. Application of cold AITC (4 °C) very briefly reduced the on-site temperature to < 17 °C (temperature at which TRPA1s can be activated), but had no effect on triggering of the reflex. By contrast, reducing the on-site temperature to < 17 °C for a longer time by continuous flow of cold AITC or by application of iced AITC paradoxically delayed/prevented the triggering of AITC-induced reflexes. Prior application of the TRPA1 antagonist had no effect on the threshold for the punctate mechanical stimuli-induced reflex or the number of low-force or high-force continuous mechanical pressure stimuli-induced reflexes. TRPA1s are functional and act as chemosensors, but not as cold sensors or mechanosensors, for triggering of the swallowing reflex. A brief cold stimulus has no effect on triggering of the reflex. However, a longer cold stimulus delays/prevents triggering of the reflex because of cold anesthesia.


Pharmacological activation of transient receptor potential vanilloid 4 promotes triggering of the swallowing reflex in rats.

  • Mohammad Zakir Hossain‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2023‎

The swallowing reflex is an essential physiological reflex that allows food or liquid to pass into the esophagus from the oral cavity. Delayed triggering of this reflex is a significant health problem in patients with oropharyngeal dysphagia for which no pharmacological treatments exist. Transient receptor potential channels have recently been discovered as potential targets to facilitate triggering of the swallowing reflex. However, the ability of transient receptor potential vanilloid 4 (TRPV4) to trigger the swallowing reflex has not been studied. Here, we demonstrate the involvement of TRPV4 in triggering the swallowing reflex in rats. TRPV4 immunoreactive nerve fibers were observed in the superior laryngeal nerve (SLN)-innervated swallowing-related regions. Retrograde tracing with fluorogold revealed localization of TRPV4 on approximately 25% of SLN-afferent neurons in the nodose-petrosal-jugular ganglionic complex. Among them, approximately 49% were large, 35% medium, and 15% small-sized SLN-afferent neurons. Topical application of a TRPV4 agonist (GSK1016790A) to the SLN-innervated regions dose-dependently facilitated triggering of the swallowing reflex, with the highest number of reflexes triggered at a concentration of 250 μM. The number of agonist-induced swallowing reflexes was significantly reduced by prior topical application of a TRPV4 antagonist. These findings indicate that TRPV4 is expressed on sensory nerves innervating the swallowing-related regions, and that its activation by an agonist can facilitate swallowing. TRPV4 is a potential pharmacological target for the management of oropharyngeal dysphagia.


Descending serotonergic modulation from rostral ventromedial medulla to spinal trigeminal nucleus is involved in experimental occlusal interference-induced chronic orofacial hyperalgesia.

  • Si-Yi Mo‎ et al.
  • The journal of headache and pain‎
  • 2023‎

Dental treatment associated with unadaptable occlusal alteration can cause chronic primary myofascial orofacial pain. The serotonin (5-HT) pathway from the rostral ventromedial medulla (RVM) exerts descending modulation on nociceptive transmission in the spinal trigeminal nucleus (Sp5) and facilitates chronic pain. The aim of this study was to investigate whether descending 5-HT modulation from the RVM to the Sp5 is involved in the maintenance of primary myofascial orofacial hyperalgesia after persistent experimental occlusal interference (PEOI) or after delayed removal of experimental occlusal interference (REOI).


Mechanisms involved in extraterritorial facial pain following cervical spinal nerve injury in rats.

  • Azusa Kobayashi‎ et al.
  • Molecular pain‎
  • 2011‎

The aim of this study is to clarify the neural mechanisms underlying orofacial pain abnormalities after cervical spinal nerve injury. Nocifensive behavior, phosphorylated extracellular signal-regulated kinase (pERK) expression and astroglial cell activation in the trigeminal spinal subnucleus caudalis (Vc) and upper cervical spinal dorsal horn (C1-C2) neurons were analyzed in rats with upper cervical spinal nerve transection (CNX).


Jaw-opening and -closing premotoneurons in the nucleus of the solitary tract making contacts with laryngeal and pharyngeal afferent terminals in rats.

  • Ayaka Oka‎ et al.
  • Brain research‎
  • 2013‎

This study clarified the neural mechanisms underlying jaw movements in pharyngolaryngeal reflexes such as swallowing in rats. After retrograde tracer injections into the ventromedial division (Vmovm) of the trigeminal motor nucleus (Vmo) containing jaw-opening (JO) motoneurons or into the dorsolateral division (Vmodl) of Vmo containing jaw-closing (JC) motoneurons, JO and JC premotoneurons were labeled with an ipsilateral predominance in the medial and intermediate subnuclei of the rostrocaudal middle two-thirds of the nucleus of the solitary tract (Sol); JC premotoneurons were also in the lateral subnucleus of Sol. After anterograde tracer injections into the Sol, axons were labeled with an ipsilateral predominance in the Vmovm and Vmodl, prominently in the ipsilateral Vmovm. After transganglionic tracer applications to the superior laryngeal nerve (SLN) or the cervical trunk of the glossopharyngeal nerve (GpN-ct), labeled afferents were seen in the medial, intermediate, lateral and interstitial subnuclei of Sol at the rostral three-fourths of Sol, indicating considerable overlap with the JO and JC premotoneurons in the Sol. Double labeling experiments demonstrated contacts between the afferent terminals and the JO and JC premotoneurons. The present study has for the first time revealed the differential distribution of JO and JC premotoneurons in the Sol and features of their projections from the Sol, as well as their connections with SLN and GpN-ct afferent inputs. The JO and JC premotoneurons in the Sol may play an important role in generation and organization of jaw movements in pharyngolaryngeal reflexes evoked by SLN and GpN-ct inputs, such as swallowing.


The effect of minocycline on the masticatory movements following the inferior alveolar nerve transection in freely moving rats.

  • Rahman Md Mostafeezur‎ et al.
  • Molecular pain‎
  • 2012‎

To determine the effects of inferior alveolar nerve transection (IAN-X) on masticatory movements in freely moving rats and to test if microglial cells in the trigeminal principal sensory nucleus (prV) or motor nucleus (motV) may be involved in modulation of mastication, the effects of microglial cell inhibitor minocycline (MC) on masticatory jaw movements, microglia (Iba1) immunohistochemistry and the masticatory jaw movements and related masticatory muscle EMG activities were studied in IAN-X rats.


Functional involvement of acid-sensing ion channel 3 in the swallowing reflex in rats.

  • Mohammad Zakir Hossain‎ et al.
  • Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society‎
  • 2020‎

Difficulty swallowing represents a major health problem. Swallowing function is improved by incorporating weak acids in suspensions/food boluses, implicating acid-sensing ion channels (ASICs) in the swallowing reflex. However, the functional involvement of ASICs in the swallowing reflex has not been fully elucidated.


Satellite glial cell P2Y12 receptor in the trigeminal ganglion is involved in lingual neuropathic pain mechanisms in rats.

  • Ayano Katagiri‎ et al.
  • Molecular pain‎
  • 2012‎

It has been reported that the P2Y12 receptor (P2Y12R) is involved in satellite glial cells (SGCs) activation, indicating that P2Y12R expressed in SGCs may play functional roles in orofacial neuropathic pain mechanisms. However, the involvement of P2Y12R in orofacial neuropathic pain mechanisms is still unknown. We therefore studied the reflex to noxious mechanical or heat stimulation of the tongue, P2Y12R and glial fibrillary acidic protein (GFAP) immunohistochemistries in the trigeminal ganglion (TG) in a rat model of unilateral lingual nerve crush (LNC) to evaluate role of P2Y12R in SGC in lingual neuropathic pain.


Involvement of peripheral ionotropic glutamate receptors in orofacial thermal hyperalgesia in rats.

  • Kuniya Honda‎ et al.
  • Molecular pain‎
  • 2011‎

The purpose of the present study was to elucidate the mechanisms that may underlie the sensitization of trigeminal spinal subnucleus caudalis (Vc) and upper cervical spinal cord (C1-C2) neurons to heat or cold stimulation of the orofacial region following glutamate (Glu) injection.


Mechanisms involved in an increment of multimodal excitability of medullary and upper cervical dorsal horn neurons following cutaneous capsaicin treatment.

  • Kuniya Honda‎ et al.
  • Molecular pain‎
  • 2008‎

In order to evaluate mechanisms that may underlie the sensitization of trigeminal spinal subnucleus caudalis (Vc; the medullary dorsal horn) and upper cervical spinal cord (C1-C2) nociceptive neurons to heat, cold and mechanical stimuli following topical capsaicin treatment of the facial skin, nocifensive behaviors as well as phosphorylation of extracellular regulated-kinase (pERK) in Vc and C1-C2 neurons were studied in rats.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: