Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Metagenomic Sequencing Revealed the Potential Pathogenic Threats of Banknotes.

  • Jun Lin‎ et al.
  • ACS omega‎
  • 2021‎

Banknotes have long been suspected to be biologically "dirty" due to their frequent human contact, which may transmit human microbial pathogens. Still, it is an unsettled issue whether the microbes on banknotes pose a real threat to human health. In several previous studies, metagenomic sequencing was used to reveal the diversities of microbes on banknotes but live microorganism culture and functional verification were lacking. In this study, we collected banknotes of RMB in China as well as dollar bills in the United States and analyzed the microbial biodiversity and drug resistance genes carried by the identified microbes by metagenomic sequencing and in vitro culture methods. We identified eight major genera of drug-resistant bacteria through screening of 30 antibiotics, and the blood agar plate culture uncovered six pathogenic fungal species. Numerous phage and six dangerous viral sequences were also found. These results should substantiate our concern about the potential risk of banknotes to human health.


Site-Selective Reaction of Enaminones and Enamine Esters for the Synthesis of Novel Diverse Morphan Derivatives.

  • Xing-Mei Hu‎ et al.
  • ACS omega‎
  • 2018‎

An efficient and concise protocol was developed for the synthesis of diverse morphan derivatives 5-7 by the Michael and aza-Michael reaction of different types of quinone monoketals 1 or quinone imine ketals 2 with enaminones or enamine esters 3 promoted by 1,8-diazabicyclo[5.4.0]undec-7-ene in acetone at reflux. Notably, when cyclic enaminone 4 was used as a substrate in the aza-Michael and 1,2-addition reactions with quinone monoketals 1, they gave another novel morphan 8. This method is suitable for parallel synthesis of bridged ring compounds. As a result, highly diverse morphan derivatives were easily and efficiently prepared by the Michael/aza-Michael or aza-Michael/1,2-addition reactions.


Beyond the Antagonism: Self-Labeled Xanthone Inhibitors as Modeled "Two-in-One" Drugs in Cancer Therapy.

  • Fu-Chao Yu‎ et al.
  • ACS omega‎
  • 2017‎

Self-labeled inhibitors (SLIs) are promising for creating links, ranging from cancer therapy and metastatic pathways to mechanistic elucidation. In this study, a new category of "two-in-one" fluorescent xanthone inhibitors was developed for the systematic evaluation of anticancer activity and the selective imaging of cytoplasm in vitro. These xanthone inhibitors presented high fluorescent brightness, working over a wide pH range enabled by a "switchable reaction" of the heterocyclic backbone. The strength and nature of fluorescence were probed via spectroscopic methods and density functional theory calculations on the molecular level, respectively. Along with the potent anticancer activity, which was demonstrated using MTT and clonogenic assays with high fluorescent brightness in the cytoplasm, SLI 3fd could be established as a modeled self-monitoring drug in cancer therapy.


CircRNA CircRIMS Acts as a MicroRNA Sponge to Promote Gastric Cancer Metastasis.

  • Jun Lin‎ et al.
  • ACS omega‎
  • 2020‎

Circular RNAs (circRNAs), a new category of noncoding RNA, have emerged in recent years as novel biomolecules with important biological functions. Increasing evidence and reports have revealed that circRNAs play an important role in human carcinogenesis and tumor progression. Gastric cancer (GC) is one of the most prevalent life-threatening malignancies worldwide, and in the present study, a novel circRNA molecule (circRIMS) was shown to be associated GC metastasis using next-generation sequencing. CircRIMS remarkably promoted GC cell metastasis in vitro, functioning as a sponge for hsa-miR-148a-5p and hsa-miR-218-5p. In addition, the results of rescue experiments showed that hsa-miR-148a-5p and hsa-miR-218-5p mimics could reverse the tumor-promoting roles of circRIMS in GC. Thus, circRIMS has potential as an early biomarker for use in predicting invasive metastasis in GC and to guide clinical diagnosis and treatment for precision medicine.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: