Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

Generation of a heterozygous p53 R249S mutant human embryonic stem cell line by TALEN-mediated genome editing.

  • Zijun Huo‎ et al.
  • Stem cell research‎
  • 2019‎

As one of the most essential genome guardians, p53 and its mutants have been suggested associated with many types of cancers. Many p53 mutants function induce unique phenotypes, including carcinogenesis, metastasis, and drug resistance. The p53(R249S) mutation is the most prevalent and specific mutation associated with liver cancer development. Here, we demonstrate the generation of a heterozygous p53(R249S) mutation in the H9 human embryonic stem cell line using TALEN-mediated genome editing. The generated cell line maintains a normal karyotype, a pluripotent state and the in vivo capacity to develop a teratoma containing all three germ layer tissues.


STRA6 Promotes Thyroid Carcinoma Progression via Activation of the ILK/AKT/mTOR Axis in Cells and Female Nude Mice.

  • Weiman He‎ et al.
  • Endocrinology‎
  • 2023‎

Metastasis has emerged to be an important cause for poor prognosis of thyroid carcinoma (TC) and its molecular mechanisms are not fully understood. STRA6 is a multifunctional membrane protein widely expressed in embryonic and adult tissues. The function and mechanism of STRA6 in TC remain elusive.


A genome-wide RNAi screen identifies opposing functions of Snai1 and Snai2 on the Nanog dependency in reprogramming.

  • Julian A Gingold‎ et al.
  • Molecular cell‎
  • 2014‎

Nanog facilitates embryonic stem cell self-renewal and induced pluripotent stem cell generation during the final stage of reprogramming. From a genome-wide small interfering RNA screen using a Nanog-GFP reporter line, we discovered opposing effects of Snai1 and Snai2 depletion on Nanog promoter activity. We further discovered mutually repressive expression profiles and opposing functions of Snai1 and Snai2 during Nanog-driven reprogramming. We found that Snai1, but not Snai2, is both a transcriptional target and protein partner of Nanog in reprogramming. Ectopic expression of Snai1 or depletion of Snai2 greatly facilitates Nanog-driven reprogramming. Snai1 (but not Snai2) and Nanog cobind to and transcriptionally activate pluripotency-associated genes including Lin28 and miR-290-295. Ectopic expression of miR-290-295 cluster genes partially rescues reprogramming inefficiency caused by Snai1 depletion. Our study thus uncovers the interplay between Nanog and mesenchymal factors Snai1 and Snai2 in the transcriptional regulation of pluripotency-associated genes and miRNAs during the Nanog-driven reprogramming process.


Generation of human embryonic stem cell line with heterozygous RB1 deletion by CRIPSR/Cas9 nickase.

  • Jian Tu‎ et al.
  • Stem cell research‎
  • 2018‎

The Retinoblastoma 1 (RB1) tumor suppressor, a member of the Retinoblastoma gene family, functions as a pocket protein for the functional binding of E2F transcription factors. About 1/3 of retinoblastoma patients harbor a germline RB1 mutation or deletion, leading to the development of retinoblastoma. Here, we demonstrate generation of a heterozygous deletion of the RB1 gene in the H1 human embryonic stem cell line using CRISPR/Cas9 nickase genome editing. The RB1 heterozygous knockout H1 cell line shows a normal karyotype, maintains a pluripotent state, and is capable of differentiation to the three germline layers.


A systematic review and meta-analysis of the risk of diarrhea associated with vandetanib treatment in carcinoma patients.

  • Zijun Huo‎ et al.
  • OncoTargets and therapy‎
  • 2016‎

Vandetanib is a promising anticancer targeted agent for treating advanced carcinomas, such as non-small-cell lung cancer, small-cell lung cancer, breast cancer, malignant glioma, hepatocellular cancer, and unresectable, locally advanced, or metastatic medullary thyroid cancer. However, diarrhea is a frequently reported adverse event. The incidence of vandetanib-associated diarrhea varies extensively in different study populations and has not been carefully estimated. This systematic review and meta-analysis of clinical trials aims to figure out the overall risks of all-grade and high-grade diarrhea during vandetanib treatment and get a better understanding of its prediction and management.


Rewired m6A epitranscriptomic networks link mutant p53 to neoplastic transformation.

  • An Xu‎ et al.
  • Nature communications‎
  • 2023‎

N6-methyladenosine (m6A), one of the most prevalent mRNA modifications in eukaryotes, plays a critical role in modulating both biological and pathological processes. However, it is unknown whether mutant p53 neomorphic oncogenic functions exploit dysregulation of m6A epitranscriptomic networks. Here, we investigate Li-Fraumeni syndrome (LFS)-associated neoplastic transformation driven by mutant p53 in iPSC-derived astrocytes, the cell-of-origin of gliomas. We find that mutant p53 but not wild-type (WT) p53 physically interacts with SVIL to recruit the H3K4me3 methyltransferase MLL1 to activate the expression of m6A reader YTHDF2, culminating in an oncogenic phenotype. Aberrant YTHDF2 upregulation markedly hampers expression of multiple m6A-marked tumor-suppressing transcripts, including CDKN2B and SPOCK2, and induces oncogenic reprogramming. Mutant p53 neoplastic behaviors are significantly impaired by genetic depletion of YTHDF2 or by pharmacological inhibition using MLL1 complex inhibitors. Our study reveals how mutant p53 hijacks epigenetic and epitranscriptomic machinery to initiate gliomagenesis and suggests potential treatment strategies for LFS gliomas.


Generation of an induced pluripotent stem cell line from an individual with a heterozygous RECQL4 mutation.

  • Brittany E Jewell‎ et al.
  • Stem cell research‎
  • 2018‎

The DNA helicase RECQL4 is known for its roles in DNA replication and repair. RECQL4 mutations cause several genetic disorders including Rothmund-Thomson syndrome (RTS), characterized by developmental defects and predisposition to osteosarcoma. Here we reprogrammed fibroblasts with a heterozygous RECQL4 mutation (c.1878 + 32_1878 + 55del24) to induced pluripotent stem cells (iPSCs). These iPSCs are pluripotent and are able to be differentiated into all three germ layers, providing a novel tool to further interrogate the role of RECQL4 DNA helicase in vitro.


Distribution Analyzer, a methodology for identifying and clustering outlier conditions from single-cell distributions, and its application to a Nanog reporter RNAi screen.

  • Julian A Gingold‎ et al.
  • BMC bioinformatics‎
  • 2015‎

Chemical or small interfering (si) RNA screens measure the effects of many independent experimental conditions, each applied to a population of cells (e.g., all of the cells in a well). High-content screens permit a readout (e.g., fluorescence, luminescence, cell morphology) from each cell in the population. Most analysis approaches compare the average effect on each population, precluding identification of outliers that affect the distribution of the reporter in the population but not its average. Other approaches only measure changes to the distribution with a single parameter, precluding accurate distinction and clustering of interesting outlier distributions.


Establishment of a human embryonic stem cell line with homozygous TP53 R248W mutant by TALEN mediated gene editing.

  • An Xu‎ et al.
  • Stem cell research‎
  • 2018‎

Genetic mutations in TP53 contribute to multiple human cancers. Here we report the generation of a H1-p53(R248W/R248W) human embryonic stem cell line harboring a homozygous TP53 R248W mutation created by TALEN-mediated precise gene editing. The H1-p53(R248W/R248W) cell line maintains a normal karyotype, robust pluripotency gene expression, and the potential to differentiate to the three germ layers.


Hereditary retinoblastoma iPSC model reveals aberrant spliceosome function driving bone malignancies.

  • Jian Tu‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

The RB1 gene is frequently mutated in human cancers but its role in tumorigenesis remains incompletely defined. Using an induced pluripotent stem cell (iPSC) model of hereditary retinoblastoma (RB), we report that the spliceosome is an up-regulated target responding to oncogenic stress in RB1-mutant cells. By investigating transcriptomes and genome occupancies in RB iPSC–derived osteoblasts (OBs), we discover that both E2F3a, which mediates spliceosomal gene expression, and pRB, which antagonizes E2F3a, coregulate more than one-third of spliceosomal genes by cobinding to their promoters or enhancers. Pharmacological inhibition of the spliceosome in RB1-mutant cells leads to global intron retention, decreased cell proliferation, and impaired tumorigenesis. Tumor specimen studies and genome-wide TCGA (The Cancer Genome Atlas) expression profile analyses support the clinical relevance of pRB and E2F3a in modulating spliceosomal gene expression in multiple cancer types including osteosarcoma (OS). High levels of pRB/E2F3a–regulated spliceosomal genes are associated with poor OS patient survival. Collectively, these findings reveal an undiscovered connection between pRB, E2F3a, the spliceosome, and tumorigenesis, pointing to the spliceosomal machinery as a potentially widespread therapeutic vulnerability of pRB-deficient cancers.


A homozygous p53 R282W mutant human embryonic stem cell line generated using TALEN-mediated precise gene editing.

  • Ruoji Zhou‎ et al.
  • Stem cell research‎
  • 2018‎

The tumor suppressor gene TP53 is the most frequently mutated gene in human cancers. Many hot-spot mutations of TP53 confer novel functions not found in wild-type p53 and contribute to tumor development and progression. We report on the generation of a H1 human embryonic stem cell line carrying a homozygous TP53 R282W mutation using TALEN-mediated genome editing. The generated cell line demonstrates normal karyotype, maintains a pluripotent state, and is capable of generating a teratoma in vivo containing tissues from all three germ layers.


LncRNA H19 Suppresses Osteosarcomagenesis by Regulating snoRNAs and DNA Repair Protein Complexes.

  • An Xu‎ et al.
  • Frontiers in genetics‎
  • 2020‎

Osteosarcoma is one of the most frequent common primary malignant tumors in childhood and adolescence. Long non-coding RNAs (lncRNAs) have been reported to regulate the initiation and progression of tumors. However, the exact molecular mechanisms involving lncRNA in osteosarcomagenesis remain largely unknown. Li-Fraumeni syndrome (LFS) is a familial cancer syndrome caused by germline p53 mutation. We investigated the tumor suppressor function of lncRNA H19 in LFS-associated osteosarcoma. Analyzing H19-induced transcriptome alterations in LFS induced pluripotent stem cell (iPSC)-derived osteoblasts, we unexpectedly discovered a large group of snoRNAs whose expression was significantly affected by H19. We identified SNORA7A among the H19-suppressed snoRNAs. SNORA7A restoration impairs H19-mediated osteogenesis and tumor suppression, indicating an oncogenic role of SNORA7A. TCGA analysis indicated that SNORA7A expression is associated with activation of oncogenic signaling and poor survival in cancer patients. Using an optimized streptavidin-binding RNA aptamer designed from H19 lncRNA, we revealed that H19-tethered protein complexes include proteins critical for DNA damage response and repair, confirming H19's tumor suppressor role. In summary, our findings demonstrate a critical role of H19-modulated SNORA7A expression in LFS-associated osteosarcomas.


Genomic Integrity Safeguards Self-Renewal in Embryonic Stem Cells.

  • Jie Su‎ et al.
  • Cell reports‎
  • 2019‎

A multitude of signals are coordinated to maintain self-renewal in embryonic stem cells (ESCs). To unravel the essential internal and external signals required for sustaining the ESC state, we expand upon a set of ESC pluripotency-associated phosphoregulators (PRs) identified previously by short hairpin RNA (shRNA) screening. In addition to the previously described Aurka, we identify 4 additional PRs (Bub1b, Chek1, Ppm1g, and Ppp2r1b) whose depletion compromises self-renewal and leads to consequent differentiation. Global gene expression profiling and computational analyses reveal that knockdown of the 5 PRs leads to DNA damage/genome instability, activating p53 and culminating in ESC differentiation. Similarly, depletion of genome integrity-associated genes involved in DNA replication and checkpoint, mRNA processing, and Charcot-Marie-Tooth disease lead to compromise of ESC self-renewal via an increase in p53 activity. Our studies demonstrate an essential link between genomic integrity and developmental cell fate regulation in ESCs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: