Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 329 papers

A clinical observation of Chinese chronic myelogenous leukemia patients after discontinuation of tyrosine kinase inhibitors.

  • Qing Li‎ et al.
  • Oncotarget‎
  • 2016‎

Whether tyrosine kinase inhibitors (TKIs) can be safely discontinued is a key focus of chronic myelogenous leukemia (CML) at present. We report a clinical observation of TKIs cessation in Chinese CML patients and a probable connection between CML leukemia stem cells (LSCs) and relapse. In all, 22 of 1057 patients consented to participate in this observation. The average time of complete molecular response was 12.73 months after TKI withdrawal. LSCs could be flow cytometrically detected in most of the patients. However, the number of LSCs did not differ between the relapsers and non-relapsers. We evaluated the leukemogenetic ability of the LSCs by transplanting bone marrow into irradiated NOD/SCID mice. The results indicated that part of the bone marrow from the relapsers lead to leukemogensis in the mice. Besides, we found that LSCs-derived microvesicles might serve as a novel factor for the stratification of undetectable minimal residual disease and an early warning sign of relapse. In summary, post-TKI cessation relapse seems to show none association with the number of LSCs. A mouse xenograft model would provide a novel and useful method of analyzing LSCs function and predicting relapse. Microvesicles may provide important information about optimal molecular monitoring schedules in TKI discontinuation strategies.


TALENs-mediated gene disruption of FLT3 in leukemia cells: Using genome-editing approach for exploring the molecular basis of gene abnormality.

  • Jue Wang‎ et al.
  • Scientific reports‎
  • 2015‎

Novel analytic tools are needed to elucidate the molecular basis of leukemia-relevant gene mutations in the post-genome era. We generated isogenic leukemia cell clones in which the FLT3 gene was disrupted in a single allele using TALENs. Isogenic clones with mono-allelic disrupted FLT3 were compared to an isogenic wild-type control clone and parental leukemia cells for transcriptional expression, downstream FLT3 signaling and proliferation capacity. The global gene expression profiles of mutant K562 clones and corresponding wild-type controls were compared using RNA-seq. The transcriptional levels and the ligand-dependent autophosphorylation of FLT3 were decreased in the mutant clones. TALENs-mediated FLT3 haplo-insufficiency impaired cell proliferation and colony formation in vitro. These inhibitory effects were maintained in vivo, improving the survival of NOD/SCID mice transplanted with mutant K562 clones. Cluster analysis revealed that the gene expression pattern of isogenic clones was determined by the FLT3 mutant status rather than the deviation among individual isogenic clones. Differentially expressed genes between the mutant and wild-type clones revealed an activation of nonsense-mediated decay pathway in mutant K562 clones as well as an inhibited FLT3 signaling. Our data support that this genome-editing approach is a robust and generally applicable platform to explore the molecular bases of gene mutations.


Comprehensive multiplatform biomarker analysis of 199 anal squamous cell carcinomas.

  • Brandon G Smaglo‎ et al.
  • Oncotarget‎
  • 2015‎

Anal squamous cell carcinoma (ASCC) is a rare, HPV-associated malignancy typically diagnosed in early stages and definitively treated with chemoradiation. In situations where patients exhibit metastatic or recurrent disease, treatment options are severely limited. In this study, molecular alterations were identified that could be used to aid in therapeutic decisions for patients with metastatic or recurrent anal squamous cell carcinoma. Specimens from patients with this cancer were tested via a multiplatform profiling service (Caris Life Sciences, Phoenix, AZ) consisting of gene sequencing, protein expression by immunohistochemistry, and gene amplification with in situ hybridization. Utilizing these techniques, novel treatment strategies that could be explored were identified, including potential benefit with anti-EGFR therapies, immune checkpoint inhibitors, topoisomerase inhibitors, and taxanes. The frequency of overexpression of proteins that mark resistance to chemotherapeutic drugs, such as MRP1 (chemotherapy efflux pump), ERCC1 (resistance to platinum-based chemotherapy), and thymidylate synthase (resistance to fluoropyrimidines) were also identified, suggesting a lack of benefit. This multiplatform strategy could be explored for its potential to generate a personalized treatment selection for patients with advanced ASCC, provide a guide for future therapeutic development for this cancer, and be extended to other rare cancer types as well.


siRNA Suppression of NEDD9 Inhibits Proliferation and Enhances Apoptosis in Renal Cell Carcinoma.

  • Jue Wang‎ et al.
  • Oncology research‎
  • 2014‎

Renal cell carcinoma (RCC) is the most lethal of all genitourinary malignancies. NEDD9/HEF1/Cas-L is a member of the Cas protein family and is known as a biomarker in multiple cancer types. In this study, we demonstrate for the first time that NEDD9 was upregulated in RCC tissue and cell lines. Immunohistochemical analysis and quantitative RT-PCR analysis showed low expression of NEDD9 in normal renal tissues and high expression in RCC tissues. In addition, in vitro experiments show that expression of NEDD9 was upregulated in RCC cell lines. Through MTT assay, we observed that NEDD9 knockdown inhibited cell proliferation. Furthermore, flow cytometry analysis showed that NEDD9 downregulation induced apoptosis. Together, our data suggest that abnormal NEDD9 protein expression may be a marker for RCC, and NEDD9 knockdown suppresses cell growth.


The effective bioengineering method of implantation decellularized renal extracellular matrix scaffolds.

  • Yong Guan‎ et al.
  • Oncotarget‎
  • 2015‎

End stage renal disease (ESRD) is a progressive loss of kidney function with a high rate of morbidity and mortality. Transplantable organs are hard to come by and hold a high risk of recipient immune rejection. We intended to establish a more effective and faster method to decellularize and recellularize the kidney scaffold for transplant and regeneration. We successfully produced renal scaffolds by decellularizing rat kidneys with 0.5% sodium dodecyl sulfate (SDS), while still preserving the extracellular matrix (ECM) 3D architecture, an intact vascular tree and biochemical components. We recellularized the kidney scaffolds with mouse embryonic stem (ES) cells that then populated and proliferated within the glomerular, vascular, and tubular structures. After in vivo implantation, these recellularized scaffolds were easily reperfused, tolerated blood pressure and produced urine with no blood leakage. Our methods can successfully decellularize and recellularize rat kidneys to produce functional renal ECM scaffolds. These scaffolds maintain their basic components, retain intact vasculature and show promise for kidney regeneration.


Is there a relationship between research sponsorship and publication impact? An analysis of funding acknowledgments in nanotechnology papers.

  • Jue Wang‎ et al.
  • PloS one‎
  • 2015‎

This study analyzes funding acknowledgments in scientific papers to investigate relationships between research sponsorship and publication impacts. We identify acknowledgments to research sponsors for nanotechnology papers published in the Web of Science during a one-year sample period. We examine the citations accrued by these papers and the journal impact factors of their publication titles. The results show that publications from grant sponsored research exhibit higher impacts in terms of both journal ranking and citation counts than research that is not grant sponsored. We discuss the method and models used, and the insights provided by this approach as well as it limitations.


Curcumin protects against lipopolysaccharide-induced vasoconstriction dysfunction via inhibition of thrombospondin-1 and transforming growth factor-β1.

  • Wei Lu‎ et al.
  • Experimental and therapeutic medicine‎
  • 2015‎

Sepsis is a complex syndrome characterized by the development of progressive dysfunction in multiple organs. The aim of the present study was to investigate the protective effect of curcumin against lipopolysaccharide (LPS)-induced vasoconstrictive dysfunction, and to investigate the possible underlying mechanism. Male Sprague-Dawley rats were randomly divided into the following groups: Control, sepsis and curcumin. A sepsis model was established by an intraperitoneal (i.p.) injection of 5 mg/kg LPS. Thoracic aortic rings obtained from the rats were mounted in an organ bath and the vasoconstriction of the rings was recorded. In addition, the serum E-selectin levels were determined by an enzyme-linked immunosorbent assay. The expression levels of thrombospondin (TSP)-1 and transforming growth factor (TGF)-β1 in the aortic tissue were detected by immunohistochemistry. Vasoconstriction of the aortic rings was found to significantly decrease in the sepsis rats when compared with the control group. However, curcumin (10 or 20 mg/kg, i.p.) prevented the vasoconstrictive dysfunction induced by LPS. The serum level of E-selectin and the expression levels of TSP-1 and TGF-β1 significantly increased in the sepsis rats when compared with the control group rats; however, the levels decreased significantly following treatment with curcumin (10 or 20 mg/kg). Furthermore, hematoxylin and eosin staining revealed that curcumin alleviated the LPS-induced damage in the aortic tunica intima and tunica media. Therefore, the results indicated that curcumin alleviates LPS-induced vasoconstrictive dysfunction in the thoracic aorta of rats. In addition, the inhibition of TSP-1 and TGF-β1 expression may be involved in the mechanism underlying this protective effect.


L-citrulline for protection of endothelial function from ADMA-induced injury in porcine coronary artery.

  • Chao Xuan‎ et al.
  • Scientific reports‎
  • 2015‎

Endogenous nitric oxide synthase (eNOS) inhibitor asymmetric dimethylarginine (ADMA) is a cardiovascular risk factor. We tested the hypothesis that L-citrulline may ameliorate the endothelial function altered by ADMA in porcine coronary artery (PCA). Myograph study for vasorelaxation, electrochemical measurement for NO, RT-PCR, and Western blot analysis for expression of eNOS, argininosuccinate synthetase (ASS), and p-eNOS(ser1177) were performed. cGMP was determined by enzyme immunoassay. Superoxide anion (O2.(-)) production was detected by the lucigenin-enhanced chemiluminescence method. Compare with controls (96.03% ± 6.2%), the maximal relaxation induced by bradykinin was significantly attenuated (61.55% ± 4.8%, p<0.01), and significantly restored by L-citrulline (82.67 ± 6.4%, p<0.05) after 24 hours of ADMA exposure. Expression of eNOS, p-eNOS(ser1177), and ASS in PCA significantly increased after L-citrulline incubation. L-citrulline also markedly restored the NO production, and cGMP level which was reduced by ADMA. The increased O2.(-) production by ADMA was also inhibited by L-citrulline. L-citrulline restores the endothelial function in preparations treated with ADMA by preservation of NO production and suppression of O2.(-) generation. Preservation of NO is attributed to the upregulation of eNOS expression along with activation of p-eNOS(ser1177). L-citrulline improves endothelium-dependent vasodilation through NO/ cGMP pathway.


A long noncoding RNA NR_045363 controls cardiomyocyte proliferation and cardiac repair.

  • Jue Wang‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2019‎

Long noncoding RNAs (lncRNAs) play important roles in the regulation of genes involved in cell proliferation. We have previously sought to more globally understand the differences of lncRNA expression between human fetal heart and adult heart to identify some functional lncRNAs which involve in the process of heart repair. We found that a highly conserved long noncoding RNA NR_045363 was mainly expressed in cardiomyocytes and rarely in non-cardiomyocytes. NR_045363 overexpression in 7-day-old mice heart could improve cardiac function and stimulate cardiomyocyte proliferation after myocardial infarction. Furthermore, NR_045363 knockdown inhibited proliferation of primary embryonic cardiomyocytes, while NR_045363 overexpression enhanced DNA synthesis and cytokinesis in neonatal cardiomyocytes in vitro. Mechanistic analysis revealed that NR_045363 promoted cardiomyocyte proliferation through interaction with miR-216a, which regulated the JAK2-STAT3 pathway. Our results showed that NR_045363 is a potent lncRNA modulator essential for cardiomyocyte proliferation.


Rational construction of genome-reduced and high-efficient industrial Streptomyces chassis based on multiple comparative genomic approaches.

  • Qing-Ting Bu‎ et al.
  • Microbial cell factories‎
  • 2019‎

Streptomyces chattanoogensis L10 is the industrial producer of natamycin and has been proved a highly efficient host for diverse natural products. It has an enormous potential to be developed as a versatile cell factory for production of heterologous secondary metabolites. Here we developed a genome-reduced industrial Streptomyces chassis by rational 'design-build-test' pipeline.


In Vivo Neural Recording and Electrochemical Performance of Microelectrode Arrays Modified by Rough-Surfaced AuPt Alloy Nanoparticles with Nanoporosity.

  • Zongya Zhao‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2016‎

In order to reduce the impedance and improve in vivo neural recording performance of our developed Michigan type silicon electrodes, rough-surfaced AuPt alloy nanoparticles with nanoporosity were deposited on gold microelectrode sites through electro-co-deposition of Au-Pt-Cu alloy nanoparticles, followed by chemical dealloying Cu. The AuPt alloy nanoparticles modified gold microelectrode sites were characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and in vivo neural recording experiment. The SEM images showed that the prepared AuPt alloy nanoparticles exhibited cauliflower-like shapes and possessed very rough surfaces with many different sizes of pores. Average impedance of rough-surfaced AuPt alloy nanoparticles modified sites was 0.23 MΩ at 1 kHz, which was only 4.7% of that of bare gold microelectrode sites (4.9 MΩ), and corresponding in vitro background noise in the range of 1 Hz to 7500 Hz decreased to 7.5 μ V rms from 34.1 μ V rms at bare gold microelectrode sites. Spontaneous spike signal recording was used to evaluate in vivo neural recording performance of modified microelectrode sites, and results showed that rough-surfaced AuPt alloy nanoparticles modified microelectrode sites exhibited higher average spike signal-to-noise ratio (SNR) of 4.8 in lateral globus pallidus (GPe) due to lower background noise compared to control microelectrodes. Electro-co-deposition of Au-Pt-Cu alloy nanoparticles combined with chemical dealloying Cu was a convenient way for increasing the effective surface area of microelectrode sites, which could reduce electrode impedance and improve the quality of in vivo spike signal recording.


Intra- and Inter-Scanner Reliability of Voxel-Wise Whole-Brain Analytic Metrics for Resting State fMRI.

  • Na Zhao‎ et al.
  • Frontiers in neuroinformatics‎
  • 2018‎

As the multi-center studies with resting-state functional magnetic resonance imaging (RS-fMRI) have been more and more applied to neuropsychiatric studies, both intra- and inter-scanner reliability of RS-fMRI are becoming increasingly important. The amplitude of low frequency fluctuation (ALFF), regional homogeneity (ReHo), and degree centrality (DC) are 3 main RS-fMRI metrics in a way of voxel-wise whole-brain (VWWB) analysis. Although the intra-scanner reliability (i.e., test-retest reliability) of these metrics has been widely investigated, few studies has investigated their inter-scanner reliability. In the current study, 21 healthy young subjects were enrolled and scanned with blood oxygenation level dependent (BOLD) RS-fMRI in 3 visits (V1 - V3), with V1 and V2 scanned on a GE MR750 scanner and V3 on a Siemens Prisma. RS-fMRI data were collected under two conditions, eyes open (EO) and eyes closed (EC), each lasting 8 minutes. We firstly evaluated the intra- and inter-scanner reliability of ALFF, ReHo, and DC. Secondly, we measured systematic difference between two scanning visits of the same scanner as well as between two scanners. Thirdly, to account for the potential difference of intra- and inter-scanner local magnetic field inhomogeneity, we measured the difference of relative BOLD signal intensity to the mean BOLD signal intensity of the whole brain between each pair of visits. Last, we used percent amplitude of fluctuation (PerAF) to correct the difference induced by relative BOLD signal intensity. The inter-scanner reliability was much worse than intra-scanner reliability; Among the VWWB metrics, DC showed the worst (both for intra-scanner and inter-scanner comparisons). PerAF showed similar intra-scanner reliability with ALFF and the best reliability among all the 4 metrics. PerAF reduced the influence of BOLD signal intensity and hence increase the inter-scanner reliability of ALFF. For multi-center studies, inter-scanner reliability should be taken into account.


Surface modification of PGP for a neutrophil-nanoparticle co-vehicle to enhance the anti-depressant effect of baicalein.

  • Baoyu Chen‎ et al.
  • Acta pharmaceutica Sinica. B‎
  • 2018‎

Exploiting cells as vehicles combined with nanoparticles combined with therapy has attracted increasing attention in the world recently. Red blood cells, leukocytes and stem cells have been used for tumor immunotherapy, tissue regeneration and inflammatory disorders, and it is known that neutrophils can accumulate in brain lesions in many brain diseases including depression. N-Acetyl Pro-Gly-Pro (PGP) peptide shows high specific binding affinity to neutrophils through the CXCR2 receptor. In this study, PGP was used to modify baicalein-loaded solid lipid nanoparticles (PGP-SLNs) to facilitate binding to neutrophils in vivo. Brain-targeted delivery to the basolateral amygdala (BLA) was demonstrated by enhanced concentration of baicalein in the BLA. An enhanced anti-depressant effect was observed in vitro and in vivo. The mechanism involved inhibition of apoptosis and a decrease in lactate dehydrogenase release. Behavioral evaluation carried out with rats demonstrated that anti-depression outcomes were achieved. The results indicate that PGP-SLNs decrease immobility time, increase swimming time and climbing time and attenuate locomotion in olfactory-bulbectomized (OB) rats. In conclusion, PGP modification is a strategy for targeting the brain with a cell-nanoparticle delivery system for depression therapy.


Deficiency of PRKD2 triggers hyperinsulinemia and metabolic disorders.

  • Yao Xiao‎ et al.
  • Nature communications‎
  • 2018‎

Hyperinsulinemia is the earliest symptom of insulin resistance (IR), but a causal relationship between the two remains to be established. Here we show that a protein kinase D2 (PRKD2) nonsense mutation (K410X) in two rhesus monkeys with extreme hyperinsulinemia along with IR and metabolic defects by using extreme phenotype sampling and deep sequencing analyses. This mutation reduces PRKD2 at both the mRNA and the protein levels. Taking advantage of a PRKD2-KO mouse model, we demonstrate that PRKD2 deletion triggers hyperinsulinemia which precedes to IR and metabolic disorders in the PRKD2 ablation mice. PRKD2 deficiency promotes β-cell insulin secretion by increasing the expression and activity of L-type Ca2+ channels and subsequently augmenting high glucose- and membrane depolarization-induced Ca2+ influx. Altogether, these results indicate that down-regulation of PRKD2 is involved in the pathogenesis of hyperinsulinemia which, in turn, results in IR and metabolic disorders.


Timing of erythropoietin modified mesenchymal stromal cell transplantation for the treatment of experimental bronchopulmonary dysplasia.

  • Zhaohua Zhang‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2018‎

The aim of this study is to optimize the timing of erythropoietin gene modified mesenchymal stem cells (EPO-MSCs) transplantation for bronchopulmonary dysplasia (BPD). Three weeks post-operation, the results indicated that the damage of airway structure and apoptosis were significantly decreased, the proliferation was increased in three EPO-MSCs transplantation groups as compared with BPD mice. Moreover, the inflammation cytokines were improvement in early EPO-MSCs injection mice than in BPD mice, but there was no significant difference between late injection and BPD groups. Furthermore, the protein expression ratio of p-p38/p38MAPK was down-regulation in early mice but not in late transplantation mice. Our findings suggest that EPO-MSCs maybe attenuate BPD injury in early than in late administration by inhibiting inflammation response through down-regulation of the p38MAPK signalling pathway.


MicroRNA-375 Suppresses the Tumor Aggressive Phenotypes of Clear Cell Renal Cell Carcinomas through Regulating YWHAZ.

  • Xiang Zhang‎ et al.
  • Chinese medical journal‎
  • 2018‎

MicroRNAs (miRNAs) are key regulators during tumor initiation and progression. MicroRNA-375 (MiR-375) has been proven to play a tumor-suppressive role in various types of human malignancies; however, its biological role in clear cell renal cell carcinoma (ccRCC) remains unclear. The purpose of this study was to explore the biologic role as well as the underlying mechanism of miR-375 in ccRCC progression.


Identification and characterization of histone modification gene family reveal their critical responses to flower induction in apple.

  • Sheng Fan‎ et al.
  • BMC plant biology‎
  • 2018‎

Histone methylation and acetylation regulate biological processes in plants through various histone modifications (HMs) gene families. However, knowledge of HMs genes is limited in horticultural deciduous trees, including apple (Malus domestica).


Spontaneous periodontitis is associated with metabolic syndrome in rhesus monkeys.

  • Hai-Tao Sun‎ et al.
  • Archives of oral biology‎
  • 2014‎

The present study was designed to investigate (1) whether the non-human primate would be an appropriate animal model for the study of spontaneous periodontitis and its association with metabolic syndrome (MetS), and (2) whether microRNAs (miRNAs) play roles in the co-development of metabolic disorders and periodontitis.


Temporal reliability and lateralization of the resting-state language network.

  • Linlin Zhu‎ et al.
  • PloS one‎
  • 2014‎

The neural processing loop of language is complex but highly associated with Broca's and Wernicke's areas. The left dominance of these two areas was the earliest observation of brain asymmetry. It was demonstrated that the language network and its functional asymmetry during resting state were reproducible across institutions. However, the temporal reliability of resting-state language network and its functional asymmetry are still short of knowledge. In this study, we established a seed-based resting-state functional connectivity analysis of language network with seed regions located at Broca's and Wernicke's areas, and investigated temporal reliability of language network and its functional asymmetry. The language network was found to be temporally reliable in both short- and long-term. In the aspect of functional asymmetry, the Broca's area was found to be left lateralized, while the Wernicke's area is mainly right lateralized. Functional asymmetry of these two areas revealed high short- and long-term reliability as well. In addition, the impact of global signal regression (GSR) on reliability of the resting-state language network was investigated, and our results demonstrated that GSR had negligible effect on the temporal reliability of the resting-state language network. Our study provided methodology basis for future cross-culture and clinical researches of resting-state language network and suggested priority of adopting seed-based functional connectivity for its high reliability.


Structural basis for the Smad5 MH1 domain to recognize different DNA sequences.

  • Nan Chai‎ et al.
  • Nucleic acids research‎
  • 2015‎

Smad proteins are important intracellular mediators of TGF-β signalling, which transmit signals directly from cell surface receptors to the nucleus. The MH1 domain of Smad plays a key role in DNA recognition. Two types of DNA sequence were identified as Smad binding motifs: the Smad binding element (SBE) and the GC-rich sequence. Here we report the first crystal structure of the Smad5 MH1 domain in complex with the GC-rich sequence. Compared with the Smad5-MH1/SBE complex structure, the Smad5 MH1 domain contacts the GC-rich site with the same β-hairpin, but the detailed interaction modes are different. Conserved β-hairpin residues make base specific contacts with the minimal GC-rich site, 5'-GGC-3'. The assembly of Smad5-MH1 on the GC-rich DNA also results in distinct DNA conformational changes. Moreover, the crystal structure of Smad5-MH1 in complex with a composite DNA sequence demonstrates that the MH1 domain is targeted to each binding site (GC-rich or SBE) with modular binding modes, and the length of the DNA spacer affects the MH1 assembly. In conclusion, our work provides the structural basis for the recognition and binding specificity of the Smad MH1 domain with the DNA targets.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: