Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 18 papers out of 18 papers

Antibiotics Effects on the Fecal Metabolome in Preterm Infants.

  • Laura Patton‎ et al.
  • Metabolites‎
  • 2020‎

Within a randomized prospective pilot study of preterm infants born at less than 33 weeks' gestation, weekly fecal samples from 19 infants were collected and metabolomic analysis was performed. The objective was to evaluate for differences in fecal metabolites in infants exposed to antibiotics vs. not exposed to antibiotics in the first 48 h after birth. Metabolomics analysis was performed on 123 stool samples. Significant differences were seen in the antibiotics vs. no antibiotics groups, including pathways related to vitamin biosynthesis, bile acids, amino acid metabolism, and neurotransmitters. Early antibiotic exposure in preterm infants may alter metabolites in the intestinal tract of preterm infants. Broader multi-omic studies that address mechanisms will guide more prudent antibiotic use in this population.


Enteral Arg-Gln Dipeptide Administration Increases Retinal Docosahexaenoic Acid and Neuroprotectin D1 in a Murine Model of Retinopathy of Prematurity.

  • Lynn Calvin Shaw‎ et al.
  • Investigative ophthalmology & visual science‎
  • 2018‎

Low levels of the long chain polyunsaturated fatty acid (LCPUFA) docosahexaenoic acid (DHA) have been implicated in retinopathy of prematurity (ROP). However, oral DHA suffers from poor palatability and is associated with increased bleeding in premature infants. We asked whether oral administration of the neutraceutical arginine-glutamine (Arg-Glu) could increase retinal DHA and improve outcomes in a mouse model of oxygen-induced retinopathy (OIR).


Frozen Mother's Own Milk Can Be Used Effectively to Personalize Donor Human Milk.

  • Monica F Torrez Lamberti‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

Feeding preterm infants mother's own milk (MOM) lowers rates of sepsis, decreases necrotizing enterocolitis, and shortens hospital stay. In the absence of freshly expressed MOM, frozen MOM (FMOM) is provided. When MOM is unavailable, preterm infants are often fed pasteurized donor human milk (DHM), rendering it devoid of beneficial bacteria. We have previously reported that when MOM is inoculated into DHM to restore the live microbiota [restored milk (RM)], a similar microbial diversity to MOM can be achieved. Yet, it is unknown if a similar diversity to MOM can be obtained when FMOM is inoculated into DHM. The goal of this study was to determine whether a similar microbial composition to MOM could be obtained when FMOM is used to personalize DHM. To this end, a fresh sample of MOM was obtained and divided into fresh and frozen fractions. MOM and FMOM were inoculated into DHM at different dilutions: MOM/FMOM 10% (RM/FRM10) and MOM/FMOM 30% (RM/FRM30) and incubated at 37°C. At different timepoints, culture-dependent and culture-independent techniques were performed. Similar microbiota expansion and alpha diversity were observed in MOM, RM10, and RM30 whether fresh or frozen milk was used as the inoculum. To evaluate if microbial expansion would result in an abnormal activation on the innate immune system, Caco-2 epithelial cells were exposed to RM/FRM to compare interleukin 8 levels with Caco-2 cells exposed to MOM or DHM. It was found that RM samples did not elicit a significant increase in IL-8 levels when compared to MOM or FMOM. These results suggest that FMOM can be used to inoculate DHM if fresh MOM is unavailable or limited in supply, allowing both fresh MOM and FMOM to be viable options in a microbial restoration strategy.


Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes.

  • Christopher T Brown‎ et al.
  • PloS one‎
  • 2011‎

Recent studies have suggested a bacterial role in the development of autoimmune disorders including type 1 diabetes (T1D). Over 30 billion nucleotide bases of Illumina shotgun metagenomic data were analyzed from stool samples collected from four pairs of matched T1D case-control subjects collected at the time of the development of T1D associated autoimmunity (i.e., autoantibodies). From these, approximately one million open reading frames were predicted and compared to the SEED protein database. Of the 3,849 functions identified in these samples, 144 and 797 were statistically more prevalent in cases and controls, respectively. Genes involved in carbohydrate metabolism, adhesions, motility, phages, prophages, sulfur metabolism, and stress responses were more abundant in cases while genes with roles in DNA and protein metabolism, aerobic respiration, and amino acid synthesis were more common in controls. These data suggest that increased adhesion and flagella synthesis in autoimmune subjects may be involved in triggering a T1D associated autoimmune response. Extensive differences in metabolic potential indicate that autoimmune subjects have a functionally aberrant microbiome. Mining 16S rRNA data from these datasets showed a higher proportion of butyrate-producing and mucin-degrading bacteria in controls compared to cases, while those bacteria that produce short chain fatty acids other than butyrate were higher in cases. Thus, a key rate-limiting step in butyrate synthesis is more abundant in controls. These data suggest that a consortium of lactate- and butyrate-producing bacteria in a healthy gut induce a sufficient amount of mucin synthesis to maintain gut integrity. In contrast, non-butyrate-producing lactate-utilizing bacteria prevent optimal mucin synthesis, as identified in autoimmune subjects.


Influence of fecal sample storage on bacterial community diversity.

  • Luiz F W Roesch‎ et al.
  • The open microbiology journal‎
  • 2009‎

Previous studies have identified a correlation, either positive or negative, between specific stool bacteria strains and certain autoimmune diseases. These conflicting data may relate to sample collection. The aim of this work was to evaluate the influence of the collection parameters of time and temperature on bacterial community composition. Samples were taken from healthy children and immediately divided in 5 sub-samples. One sample was frozen immediately at -80 ° C, while the other aliquots were frozen 12, 24, 48, and 72h later DNA extracted from each sample was used to amplify the 16S rRNA with barcoded primers. The amplified products were pooled and partial 16S rRNA sequences were obtained by pyrosequencing. Person-to-person variability in community diversity was high. A list of those taxa that comprise at least 1% of the community was made for each individual. None of these were present in high numbers in all individuals. The Bacteroides were present in the highest abundance in three of four subjects. A total of 23,701 16S rRNA sequences were obtained with an average of 1,185 reads per sample with an average length of 200 bases. Although pyrosequencing of amplified 16S rRNA identified changes in community composition over time (~10%), little diversity change was observed at 12 hours (3.06%) with gradual changes occurring after 24 (8.61%), 48 (9.72%), and 72 h (10.14%), post collection.


Intestinal microbial ecology and environmental factors affecting necrotizing enterocolitis.

  • Roberto Murgas Torrazza‎ et al.
  • PloS one‎
  • 2013‎

Necrotizing enterocolitis (NEC) is the most devastating intestinal disease affecting preterm infants. In addition to being associated with short term mortality and morbidity, survivors are left with significant long term sequelae. The cost of caring for these infants is high. Epidemiologic evidence suggests that use of antibiotics and type of feeding may cause an intestinal dysbiosis important in the pathogenesis of NEC, but the contribution of specific infectious agents is poorly understood. Fecal samples from preterm infants ≤ 32 weeks gestation were analyzed using 16S rRNA based methods at 2, 1, and 0 weeks, prior to diagnosis of NEC in 18 NEC cases and 35 controls. Environmental factors such as antibiotic usage, feeding type (human milk versus formula) and location of neonatal intensive care unit (NICU) were also evaluated. Microbiota composition differed between the three neonatal units where we observed differences in antibiotic usage. In NEC cases we observed a higher proportion of Proteobacteria (61%) two weeks and of Actinobacteria (3%) 1 week before diagnosis of NEC compared to controls (19% and 0.4%, respectively) and lower numbers of Bifidobacteria counts and Bacteroidetes proportions in the weeks before NEC diagnosis. In the first fecal samples obtained during week one of life we detected a novel signature sequence, distinct from but matching closest to Klebsiella pneumoniae, that was strongly associated with NEC development later in life. Infants who develop NEC exhibit a different pattern of microbial colonization compared to controls. Antibiotic usage correlated with these differences and combined with type of feeding likely plays a critical role in the development of NEC.


Metabolic effects of different protein intakes after short term undernutrition in artificially reared infant rats.

  • Clotilde des Robert‎ et al.
  • Early human development‎
  • 2009‎

Early postnatal nutrition is involved in metabolic programming. Small for gestational age and premature babies commonly receive insufficient dietary protein during the neonatal period due to nutrition intolerance, whereas high protein formulas are used to achieve catch up growth. Neither the short term, nor the long term effects of such manipulation of protein intake are known.


Personalization of the Microbiota of Donor Human Milk with Mother's Own Milk.

  • Nicole T Cacho‎ et al.
  • Frontiers in microbiology‎
  • 2017‎

The American Academy of Pediatrics recommends that extremely preterm infants receive mother's own milk (MOM) when available or pasteurized donor breast milk (DBM) when MOM is unavailable. The goal of this study was to determine whether DBM could be inoculated with MOM from mothers of preterm infants to restore the live microbiota (RM). Culture dependent and culture independent methods were used to analyze the fluctuations in the overall population and microbiome, respectively, of DBM, MOM, and RM samples over time. Using MOM at time = 0 (T0) as the target for the restoration process, this level was reached in the 10% (RM-10) and 30% (RM-30) mixtures after 4 h of incubation at 37°C, whereas, the larger dilutions of 1% (RM-1) and 5% (RM-5) after 8 h. The diversity indexes were similar between MOM and DBM samples, however, different genera were prevalent in each group. Interestingly, 40% of the bacterial families were able to expand in DBM after 4 h of incubation indicating that a large percentage of the bacterial load present in MOM can grow when transferred to DBM, however, no core microbiome was identified. In summary, the microbiome analyses indicated that each mother has a unique microbiota and that live microbial reestablishment of DBM may provide these microbes to individual mothers' infants. The agreement between the results obtained from the viable bacterial counts and the microbiome analyses indicate that DBM incubated with 10-30% v/v of the MOM for 4 h is a reasonable restoration strategy.


Metabolomic Profile of Personalized Donor Human Milk.

  • Monica F Torrez Lamberti‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Human milk could be considered an active and complex mixture of beneficial bacteria and bioactive compounds. Since pasteurization drastically reduces the microbial content, we recently demonstrated that pasteurized donor human milk (DHM) could be inoculated with different percentages (10% and 30%) of mother's own milk (MOM) to restore the unique live microbiota, resulting in personalized milk (RM10 and RM30, respectively). Pasteurization affects not only the survival of the microbiota but also the concentration of proteins and metabolites, in this study, we performed a comparative metabolomic analysis of the RM10, RM30, MOM and DHM samples to evaluate the impact of microbial restoration on metabolite profiles, where metabolite profiles clustered into four well-defined groups. Comparative analyses of DHM and MOM metabolomes determined that over one thousand features were significantly different. In addition, significant changes in the metabolite concentrations were observed in MOM and RM30 samples after four hours of incubation, while the concentration of metabolites in DHM remained constant, indicating that these changes are related to the microbial expansion. In summary, our analyses indicate that the metabolite profiles of DHM are significantly different from that of MOM, and the profile of MOM may be partially restored in DHM through microbial expansion.


Gut microbiota maturation during early human life induces enterocyte proliferation via microbial metabolites.

  • Michael W Dougherty‎ et al.
  • BMC microbiology‎
  • 2020‎

The intestinal tract undergoes a period of cellular maturation during early life, primarily characterized by the organization of epithelial cells into specialized crypt and villus structures. These processes are in part mediated by the acquisition of microbes. Infants delivered at term typically harbor a stable, low diversity microbiota characterized by an overrepresentation of various Bacilli spp., while pre-term infants are colonized by an assortment of bacteria during the first several weeks after delivery. However, the functional effects of these changes on intestinal epithelium homeostasis and maturation remain unclear. To study these effects, human neonate feces were obtained from term and pre-term infants. Fecal 16S rDNA sequencing and global untargeted LC-MS were performed to characterize microbial composition and metabolites from each population. Murine enteral organoids (enteroids) were cultured with 0.22 μm filtered stool supernatant pooled from term or pre-term infants.


Meconium microbiome analysis identifies bacteria correlated with premature birth.

  • Alexandria N Ardissone‎ et al.
  • PloS one‎
  • 2014‎

Preterm birth is the second leading cause of death in children under the age of five years worldwide, but the etiology of many cases remains enigmatic. The dogma that the fetus resides in a sterile environment is being challenged by recent findings and the question has arisen whether microbes that colonize the fetus may be related to preterm birth. It has been posited that meconium reflects the in-utero microbial environment. In this study, correlations between fetal intestinal bacteria from meconium and gestational age were examined in order to suggest underlying mechanisms that may contribute to preterm birth.


Perspectives of pregnant and breastfeeding women on longitudinal clinical studies that require non-invasive biospecimen collection - a qualitative study.

  • Dominick J Lemas‎ et al.
  • BMC pregnancy and childbirth‎
  • 2021‎

Investigation of the microbiome during early life has stimulated an increasing number of cohort studies in pregnant and breastfeeding women that require non-invasive biospecimen collection. The objective of this study was to explore pregnant and breastfeeding women's perspectives on longitudinal clinical studies that require non-invasive biospecimen collection and how they relate to study logistics and research participation.


Microbial Colonization Coordinates the Pathogenesis of a Klebsiella pneumoniae Infant Isolate.

  • Jillian L Pope‎ et al.
  • Scientific reports‎
  • 2019‎

Enterobacteriaceae are among the first colonizers of neonate intestine. Members of this family, such as Escherichia and Klebsiella, are considered pathobionts and as such are capable of inducing local and systemic disease under specific colonization circumstances. Interplay between developing microbiota and pathogenic function of pathobionts are poorly understood. In this study, we investigate the functional interaction between various colonization patterns on an early colonizer, K. pneumoniae. K. pneumoniae 51-5 was isolated from stool of a healthy, premature infant, and found to contain the genotoxin island pks associated with development of colorectal cancer. Using intestinal epithelial cells, macrophages, and primary splenocytes, we demonstrate K. pneumoniae 51-5 upregulates expression of proinflammatory genes in vitro. Gnotobiotic experiments in Il10-/- mice demonstrate the neonate isolate induces intestinal inflammation in vivo, with increased expression of proinflammatory genes. Regulation of microbiota assembly revealed K. pneumoniae 51-5 accelerates onset of inflammation in Il10-/- mice, most significantly when microbiota is naturally acquired. Furthermore, K. pneumoniae 51-5 induces DNA damage and cell cycle arrest. Interestingly, K. pneumoniae 51-5 induced tumors in ApcMin/+; Il10-/- mice was not significantly affected by absence of colibactin activating enzyme, ClbP. These findings demonstrate pathogenicity of infant K. pneumoniae isolate is sensitive to microbial colonization status.


Post-hypoxia Invasion of the fetal brain by multidrug resistant Staphylococcus.

  • Miguel A Zarate‎ et al.
  • Scientific reports‎
  • 2017‎

Herein we describe an association between activation of inflammatory pathways following transient hypoxia and the appearance of the multidrug resistant bacteria Staphylococcus simulans in the fetal brain. Reduction of maternal arterial oxygen tension by 50% over 30 min resulted in a subseiuent significant over-expression of genes associated with immune responses 24 h later in the fetal brain. The activated genes were consistent with stimulation by bacterial lipopolysaccharide; an influx of macrophages and appearance of live bacteria were found in these fetal brains. S. simulans was the predominant bacterial species in fetal brain after hypoxia, but was found in placenta of all animals. Strains of S. simulans from the placenta and fetal brain were equally highly resistant to multiple antibiotics including methicillin and had identical genome sequences. These results suggest that bacteria from the placenta invade the fetal brain after maternal hypoxia.


Distortions in development of intestinal microbiota associated with late onset sepsis in preterm infants.

  • Volker Mai‎ et al.
  • PloS one‎
  • 2013‎

Late onset sepsis (LOS) is a major contributor to neonatal morbidity and mortality, especially in premature infants. Distortions in the establishment of normal gut microbiota, commensal microbes that colonize the digestive tract, might increase the risk of LOS via disruption of the mucosal barrier with resultant translocation of luminal contents. Correlation of distortions of the intestinal microbiota with LOS is a necessary first step to design novel microbiota-based screening approaches that might lead to early interventions to prevent LOS in high risk infants. Using a case/control design nested in a cohort study of preterm infants, we analyzed stool samples that had been prospectively collected from ten preterm infants with LOS and from 18 matched controls. A 16S rRNA based approach was utilized to compare microbiota diversity and identify specific bacterial signatures that differed in their prevalence between cases and controls. Overall α-diversity (Chao1) was lower in cases two weeks before (p<0.05) but not one week before or at the time of diagnosis of LOS. Overall microbiota structure (Unifrac) appeared distinct in cases 2 weeks and 1 week before but not at diagnosis (p<0.05). Although we detected few operational taxonomic units (OTUs) unique or enriched in cases, we found many OTUs common in controls that were lacking in cases (p<0.01). Bifidobacteria counts were lower in cases at all time points. Our results support the hypothesis that a distortion in normal microbiota composition, and not an enrichment of potential pathogens, is associated with LOS in preterm infants.


Intestinal dysbiosis in preterm infants preceding necrotizing enterocolitis: a systematic review and meta-analysis.

  • Mohan Pammi‎ et al.
  • Microbiome‎
  • 2017‎

Necrotizing enterocolitis (NEC) is a catastrophic disease of preterm infants, and microbial dysbiosis has been implicated in its pathogenesis. Studies evaluating the microbiome in NEC and preterm infants lack power and have reported inconsistent results.


Antibiotics and the developing intestinal microbiome, metabolome and inflammatory environment in a randomized trial of preterm infants.

  • Jordan T Russell‎ et al.
  • Scientific reports‎
  • 2021‎

Antibiotic use in neonates can have detrimental effects on the developing gut microbiome, increasing the risk of morbidity. A majority of preterm neonates receive antibiotics after birth without clear evidence to guide this practice. Here microbiome, metabolomic, and immune marker results from the routine early antibiotic use in symptomatic preterm Neonates (REASON) study are presented. The REASON study is the first trial to randomize symptomatic preterm neonates to receive or not receive antibiotics in the first 48 h after birth. Using 16S rRNA sequencing of stool samples collected longitudinally for 91 neonates, the effect of such antibiotic use on microbiome diversity is assessed. The results illustrate that type of nutrition shapes the early infant gut microbiome. By integrating data for the gut microbiome, stool metabolites, stool immune markers, and inferred metabolic pathways, an association was discovered between Veillonella and the neurotransmitter gamma-aminobutyric acid (GABA). These results suggest early antibiotic use may impact the gut-brain axis with the potential for consequences in early life development, a finding that needs to be validated in a larger cohort.Trial Registration This project is registered at clinicaltrials.gov under the name "Antibiotic 'Dysbiosis' in Preterm Infants" with trial number NCT02784821.


Untargeted Metabolomic Analysis of Lactation-Stage-Matched Human and Bovine Milk Samples at 2 Weeks Postnatal.

  • Dominick J Lemas‎ et al.
  • Nutrients‎
  • 2023‎

Epidemiological data demonstrate that bovine whole milk is often substituted for human milk during the first 12 months of life and may be associated with adverse infant outcomes. The objective of this study is to interrogate the human and bovine milk metabolome at 2 weeks of life to identify unique metabolites that may impact infant health outcomes. Human milk (n = 10) was collected at 2 weeks postpartum from normal-weight mothers (pre-pregnant BMI < 25 kg/m2) that vaginally delivered term infants and were exclusively breastfeeding their infant for at least 2 months. Similarly, bovine milk (n = 10) was collected 2 weeks postpartum from normal-weight primiparous Holstein dairy cows. Untargeted data were acquired on all milk samples using high-resolution liquid chromatography-high-resolution tandem mass spectrometry (HR LC-MS/MS). MS data pre-processing from feature calling to metabolite annotation was performed using MS-DIAL and MS-FLO. Our results revealed that more than 80% of the milk metabolome is shared between human and bovine milk samples during early lactation. Unbiased analysis of identified metabolites revealed that nearly 80% of milk metabolites may contribute to microbial metabolism and microbe-host interactions. Collectively, these results highlight untargeted metabolomics as a potential strategy to identify unique and shared metabolites in bovine and human milk that may relate to and impact infant health outcomes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: