Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 62 papers

SETD1A modulates cell cycle progression through a miRNA network that regulates p53 target genes.

  • Ken Tajima‎ et al.
  • Nature communications‎
  • 2015‎

Expression of the p53-inducible antiproliferative gene BTG2 is suppressed in many cancers in the absence of inactivating gene mutations, suggesting alternative mechanisms of silencing. Using a shRNA screen targeting 43 histone lysine methyltransferases (KMTs), we show that SETD1A suppresses BTG2 expression through its induction of several BTG2-targeting miRNAs. This indirect but highly specific mechanism, by which a chromatin regulator that mediates transcriptional activating marks can lead to the downregulation of a critical effector gene, is shared with multiple genes in the p53 pathway. Through such miRNA-dependent effects, SETD1A regulates cell cycle progression in vitro and modulates tumorigenesis in mouse xenograft models. Together, these observations help explain the remarkably specific genetic consequences associated with alterations in generic chromatin modulators in cancer.


A comparative pharmacokinetic study of PARP inhibitors demonstrates favorable properties for niraparib efficacy in preclinical tumor models.

  • Kaiming Sun‎ et al.
  • Oncotarget‎
  • 2018‎

Niraparib is an orally bioavailable and selective poly (ADP-ribose) polymerase (PARP)-1/-2 inhibitor approved for maintenance treatment of both BRCA mutant (mut) and BRCA wildtype (wt) adult patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancers who have demonstrated a complete or partial response to platinum-based chemotherapy. In patients without germline BRCA mutations (non-gBRCAmut), niraparib improved progression-free survival (PFS) by 5.4 months, whereas another PARP inhibitor (PARPi) olaparib supplied only 1.9 months of improvement in a similar patient population. Previous studies revealed higher cell membrane permeability and volume of distribution (VD) as unique features of niraparib in comparison to other PARPi including olaparib. Here, we explore the potential correlation of these pharmacokinetic properties to preclinical antitumor effects in BRCAwt tumors. Our results show that at steady state, tumor exposure to niraparib is 3.3 times greater than plasma exposure in tumor xenograft mouse models. In comparison, the tumor exposure to olaparib is less than observed in plasma. In addition, niraparib crosses the blood-brain barrier and shows good sustainability in the brain, whereas sustained brain exposure to olaparib is not observed in the same models. Consistent with its favorable tumor and brain distribution, niraparib achieves more potent tumor growth inhibition than olaparib in BRCAwt models and an intracranial tumor model at maximum tolerated doses (MTD). These findings demonstrate favorable pharmacokinetic profiles and potent antitumor effects of niraparib in BRCAwt tumors, consistent with its broader clinical effect in patients with both BRCAmut and BRCAwt tumors.


Cross-talk between Lysine-Modifying Enzymes Controls Site-Specific DNA Amplifications.

  • Sweta Mishra‎ et al.
  • Cell‎
  • 2018‎

Acquired chromosomal DNA amplifications are features of many tumors. Although overexpression and stabilization of the histone H3 lysine 9/36 (H3K9/36) tri-demethylase KDM4A generates transient site-specific copy number gains (TSSGs), additional mechanisms directly controlling site-specific DNA copy gains are not well defined. In this study, we uncover a collection of H3K4-modifying chromatin regulators that function with H3K9 and H3K36 regulators to orchestrate TSSGs. Specifically, the H3K4 tri-demethylase KDM5A and specific COMPASS/KMT2 H3K4 methyltransferases modulate different TSSG loci through H3K4 methylation states and KDM4A recruitment. Furthermore, a distinct chromatin modifier network, MLL1-KDM4B-KDM5B, controls copy number regulation at a specific genomic locus in a KDM4A-independent manner. These pathways comprise an epigenetic addressing system for defining site-specific DNA rereplication and amplifications.


dREAM co-operates with insulator-binding proteins and regulates expression at divergently paired genes.

  • Michael Korenjak‎ et al.
  • Nucleic acids research‎
  • 2014‎

dREAM complexes represent the predominant form of E2F/RBF repressor complexes in Drosophila. dREAM associates with thousands of sites in the fly genome but its mechanism of action is unknown. To understand the genomic context in which dREAM acts we examined the distribution and localization of Drosophila E2F and dREAM proteins. Here we report a striking and unexpected overlap between dE2F2/dREAM sites and binding sites for the insulator-binding proteins CP190 and Beaf-32. Genetic assays show that these components functionally co-operate and chromatin immunoprecipitation experiments on mutant animals demonstrate that dE2F2 is important for association of CP190 with chromatin. dE2F2/dREAM binding sites are enriched at divergently transcribed genes, and the majority of genes upregulated by dE2F2 depletion represent the repressed half of a differentially expressed, divergently transcribed pair of genes. Analysis of mutant animals confirms that dREAM and CP190 are similarly required for transcriptional integrity at these gene pairs and suggest that dREAM functions in concert with CP190 to establish boundaries between repressed/activated genes. Consistent with the idea that dREAM co-operates with insulator-binding proteins, genomic regions bound by dREAM possess enhancer-blocking activity that depends on multiple dREAM components. These findings suggest that dREAM functions in the organization of transcriptional domains.


Distinct, strict requirements for Gfi-1b in adult bone marrow red cell and platelet generation.

  • Adlen Foudi‎ et al.
  • The Journal of experimental medicine‎
  • 2014‎

The zinc finger transcriptional repressor Gfi-1b is essential for erythroid and megakaryocytic development in the embryo. Its roles in the maintenance of bone marrow erythropoiesis and thrombopoiesis have not been defined. We investigated Gfi-1b's adult functions using a loxP-flanked Gfi-1b allele in combination with a novel doxycycline-inducible Cre transgene that efficiently mediates recombination in the bone marrow. We reveal strict, lineage-intrinsic requirements for continuous adult Gfi-1b expression at two distinct critical stages of erythropoiesis and megakaryopoiesis. Induced disruption of Gfi-1b was lethal within 3 wk with severely reduced hemoglobin levels and platelet counts. The erythroid lineage was arrested early in bipotential progenitors, which did not give rise to mature erythroid cells in vitro or in vivo. Yet Gfi-1b(-/-) progenitors had initiated the erythroid program as they expressed many lineage-restricted genes, including Klf1/Eklf and Erythropoietin receptor. In contrast, the megakaryocytic lineage developed beyond the progenitor stage in Gfi-1b's absence and was arrested at the promegakaryocyte stage, after nuclear polyploidization, but before cytoplasmic maturation. Genome-wide analyses revealed that Gfi-1b directly regulates a wide spectrum of megakaryocytic and erythroid genes, predominantly repressing their expression. Together our study establishes Gfi-1b as a master transcriptional repressor of adult erythropoiesis and thrombopoiesis.


Genomic Instability Is Induced by Persistent Proliferation of Cells Undergoing Epithelial-to-Mesenchymal Transition.

  • Valentine Comaills‎ et al.
  • Cell reports‎
  • 2016‎

TGF-β secreted by tumor stroma induces epithelial-to-mesenchymal transition (EMT) in cancer cells, a reversible phenotype linked to cancer progression and drug resistance. However, exposure to stromal signals may also lead to heritable changes in cancer cells, which are poorly understood. We show that epithelial cells failing to undergo proliferation arrest during TGF-β-induced EMT sustain mitotic abnormalities due to failed cytokinesis, resulting in aneuploidy. This genomic instability is associated with the suppression of multiple nuclear envelope proteins implicated in mitotic regulation and is phenocopied by modulating the expression of LaminB1. While TGF-β-induced mitotic defects in proliferating cells are reversible upon its withdrawal, the acquired genomic abnormalities persist, leading to increased tumorigenic phenotypes. In metastatic breast cancer patients, increased mesenchymal marker expression within single circulating tumor cells is correlated with genomic instability. These observations identify a mechanism whereby microenvironment-derived signals trigger heritable genetic changes within cancer cells, contributing to tumor evolution.


The SKP1-Cul1-F-box and leucine-rich repeat protein 4 (SCF-FbxL4) ubiquitin ligase regulates lysine demethylase 4A (KDM4A)/Jumonji domain-containing 2A (JMJD2A) protein.

  • Capucine Van Rechem‎ et al.
  • The Journal of biological chemistry‎
  • 2011‎

Chromatin-modifying enzymes play a fundamental role in regulating chromatin structure so that DNA replication is spatially and temporally coordinated. For example, the lysine demethylase 4A/Jumonji domain-containing 2A (KDM4A/JMJD2A) is tightly regulated during the cell cycle. Overexpression of JMJD2A leads to altered replication timing and faster S phase progression. In this study, we demonstrate that degradation of JMJD2A is regulated by the proteasome. JMJD2A turnover is coordinated through the SKP1-Cul1-F-box ubiquitin ligase complex that contains cullin 1 and the F-box and leucine-rich repeat protein 4 (FbxL4). This complex interacted with JMJD2A. Ubiquitin overexpression restored turnover and blocked the JMJD2A-dependent faster S phase progression in a cullin 1-dependent manner. Furthermore, increased ubiquitin levels decreased JMJD2A occupancy and BrdU incorporation at target sites. This study highlights a finely tuned mechanism for regulating histone demethylase levels and emphasizes the need to tightly regulate chromatin modifiers so that the cell cycle occurs properly.


Conserved antagonism between JMJD2A/KDM4A and HP1γ during cell cycle progression.

  • Joshua C Black‎ et al.
  • Molecular cell‎
  • 2010‎

The KDM4/JMJD2 family of histone demethylases is amplified in human cancers. However, little is known about their physiologic or tumorigenic roles. We have identified a conserved and unappreciated role for the JMJD2A/KDM4A H3K9/36 tridemethylase in cell cycle progression. We demonstrate that JMJD2A protein levels are regulated in a cell cycle-dependent manner and that JMJD2A overexpression increased chromatin accessibility, S phase progression, and altered replication timing of specific genomic loci. These phenotypes depended on JMJD2A enzymatic activity. Strikingly, depletion of the only C. elegans homolog, JMJD-2, slowed DNA replication and increased ATR/p53-dependent apoptosis. Importantly, overexpression of HP1γ antagonized JMJD2A-dependent progression through S phase, and depletion of HPL-2 rescued the DNA replication-related phenotypes in jmjd-2(-/-) animals. Our findings describe a highly conserved model whereby JMJD2A regulates DNA replication by antagonizing HP1γ and controlling chromatin accessibility.


Histone H3 methylation links DNA damage detection to activation of the tumour suppressor Tip60.

  • Yingli Sun‎ et al.
  • Nature cell biology‎
  • 2009‎

DNA double-strand break (DSB) repair involves complex interactions between chromatin and repair proteins, including Tip60, a tumour suppressor. Tip60 is an acetyltransferase that acetylates both histones and ATM (ataxia telangiectasia mutated) kinase. Inactivation of Tip60 leads to defective DNA repair and increased cancer risk. However, how DNA damage activates the acetyltransferase activity of Tip60 is not known. Here, we show that direct interaction between the chromodomain of Tip60 and histone H3 trimethylated on lysine 9 (H3K9me3) at DSBs activates the acetyltransferase activity of Tip60. Depletion of intracellular H3K9me3 blocks activation of the acetyltransferase activity of Tip60, resulting in defective ATM activation and widespread defects in DSB repair. In addition, the ability of Tip60 to access H3K9me3 is dependent on the DNA damage-induced displacement of HP1beta (heterochromatin protein 1beta) from H3K9me3. Finally, we demonstrate that the Mre11-Rad50-Nbs1 (MRN) complex targets Tip60 to H3K9me3, and is required to activate the acetyltransferase activity of Tip60. These results reveal a new function for H3K9me3 in coordinating activation of Tip60-dependent DNA repair pathways, and imply that aberrant patterns of histone methylation may contribute to cancer by altering the efficiency of DSB repair.


Expression of β-globin by cancer cells promotes cell survival during blood-borne dissemination.

  • Yu Zheng‎ et al.
  • Nature communications‎
  • 2017‎

Metastasis-competent circulating tumour cells (CTCs) experience oxidative stress in the bloodstream, but their survival mechanisms are not well defined. Here, comparing single-cell RNA-Seq profiles of CTCs from breast, prostate and lung cancers, we observe consistent induction of β-globin (HBB), but not its partner α-globin (HBA). The tumour-specific origin of HBB is confirmed by sequence polymorphisms within human xenograft-derived CTCs in mouse models. Increased intracellular reactive oxygen species (ROS) in cultured breast CTCs triggers HBB induction, mediated through the transcriptional regulator KLF4. Depletion of HBB in CTC-derived cultures has minimal effects on primary tumour growth, but it greatly increases apoptosis following ROS exposure, and dramatically reduces CTC-derived lung metastases. These effects are reversed by the anti-oxidant N-Acetyl Cysteine. Conversely, overexpression of HBB is sufficient to suppress intracellular ROS within CTCs. Altogether, these observations suggest that β-globin is selectively deregulated in cancer cells, mediating a cytoprotective effect during blood-borne metastasis.


The lysine demethylase KDM4A controls the cell-cycle expression of replicative canonical histone genes.

  • Capucine Van Rechem‎ et al.
  • Biochimica et biophysica acta. Gene regulatory mechanisms‎
  • 2020‎

Chromatin modulation provides a key checkpoint for controlling cell cycle regulated gene networks. The replicative canonical histone genes are one such gene family under tight regulation during cell division. These genes are most highly expressed during S phase when histones are needed to chromatinize the new DNA template. While this fact has been known for a while, limited knowledge exists about the specific chromatin regulators controlling their temporal expression during cell cycle. Since histones and their associated mutations are emerging as major players in diseases such as cancer, identifying the chromatin factors modulating their expression is critical. The histone lysine tri-demethylase KDM4A is regulated over cell cycle and plays a direct role in DNA replication timing, site-specific rereplication, and DNA amplifications during S phase. Here, we establish an unappreciated role for the catalytically active KDM4A in directly regulating canonical replicative histone gene networks during cell cycle. Of interest, we further demonstrate that KDM4A interacts with proteins controlling histone expression and RNA processing (i.e., hnRNPUL1 and FUS/TLS). Together, this study provides a new function for KDM4A in modulating canonical histone gene expression.


Aneuploidy and a deregulated DNA damage response suggest haploinsufficiency in breast tissues of BRCA2 mutation carriers.

  • Mihriban Karaayvaz-Yildirim‎ et al.
  • Science advances‎
  • 2020‎

Women harboring heterozygous germline mutations of BRCA2 have a 50 to 80% risk of developing breast cancer, yet the pathogenesis of these cancers is poorly understood. To reveal early steps in BRCA2-associated carcinogenesis, we analyzed sorted cell populations from freshly-isolated, non-cancerous breast tissues of BRCA2 mutation carriers and matched controls. Single-cell whole-genome sequencing demonstrates that >25% of BRCA2 carrier (BRCA2mut/+ ) luminal progenitor (LP) cells exhibit sub-chromosomal copy number variations, which are rarely observed in non-carriers. Correspondingly, primary BRCA2mut/+ breast epithelia exhibit DNA damage together with attenuated replication checkpoint and apoptotic responses, and an age-associated expansion of the LP compartment. We provide evidence that these phenotypes do not require loss of the wild-type BRCA2 allele. Collectively, our findings suggest that BRCA2 haploinsufficiency and associated DNA damage precede histologic abnormalities in vivo. Using these hallmarks of cancer predisposition will yield unanticipated opportunities for improved risk assessment and prevention strategies in high-risk patients.


DNA replication fork speed underlies cell fate changes and promotes reprogramming.

  • Tsunetoshi Nakatani‎ et al.
  • Nature genetics‎
  • 2022‎

Totipotency emerges in early embryogenesis, but its molecular underpinnings remain poorly characterized. In the present study, we employed DNA fiber analysis to investigate how pluripotent stem cells are reprogrammed into totipotent-like 2-cell-like cells (2CLCs). We show that totipotent cells of the early mouse embryo have slow DNA replication fork speed and that 2CLCs recapitulate this feature, suggesting that fork speed underlies the transition to a totipotent-like state. 2CLCs emerge concomitant with DNA replication and display changes in replication timing (RT), particularly during the early S-phase. RT changes occur prior to 2CLC emergence, suggesting that RT may predispose to gene expression changes and consequent reprogramming of cell fate. Slowing down replication fork speed experimentally induces 2CLCs. In vivo, slowing fork speed improves the reprogramming efficiency of somatic cell nuclear transfer. Our data suggest that fork speed regulates cellular plasticity and that remodeling of replication features leads to changes in cell fate and reprogramming.


Assessment of ABT-263 activity across a cancer cell line collection leads to a potent combination therapy for small-cell lung cancer.

  • Anthony C Faber‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2015‎

BH3 mimetics such as ABT-263 induce apoptosis in a subset of cancer models. However, these drugs have shown limited clinical efficacy as single agents in small-cell lung cancer (SCLC) and other solid tumor malignancies, and rational combination strategies remain underexplored. To develop a novel therapeutic approach, we examined the efficacy of ABT-263 across >500 cancer cell lines, including 311 for which we had matched expression data for select genes. We found that high expression of the proapoptotic gene Bcl2-interacting mediator of cell death (BIM) predicts sensitivity to ABT-263. In particular, SCLC cell lines possessed greater BIM transcript levels than most other solid tumors and are among the most sensitive to ABT-263. However, a subset of relatively resistant SCLC cell lines has concomitant high expression of the antiapoptotic myeloid cell leukemia 1 (MCL-1). Whereas ABT-263 released BIM from complexes with BCL-2 and BCL-XL, high expression of MCL-1 sequestered BIM released from BCL-2 and BCL-XL, thereby abrogating apoptosis. We found that SCLCs were sensitized to ABT-263 via TORC1/2 inhibition, which led to reduced MCL-1 protein levels, thereby facilitating BIM-mediated apoptosis. AZD8055 and ABT-263 together induced marked apoptosis in vitro, as well as tumor regressions in multiple SCLC xenograft models. In a Tp53; Rb1 deletion genetically engineered mouse model of SCLC, the combination of ABT-263 and AZD8055 significantly repressed tumor growth and induced tumor regressions compared with either drug alone. Furthermore, in a SCLC patient-derived xenograft model that was resistant to ABT-263 alone, the addition of AZD8055 induced potent tumor regression. Therefore, addition of a TORC1/2 inhibitor offers a therapeutic strategy to markedly improve ABT-263 activity in SCLC.


The IGF2 intronic miR-483 selectively enhances transcription from IGF2 fetal promoters and enhances tumorigenesis.

  • Mingzhu Liu‎ et al.
  • Genes & development‎
  • 2013‎

Insulin-like growth factor 2 (IGF2), a developmentally regulated and maternally imprinted gene, is frequently overexpressed in pediatric cancers. Although loss of imprinting (LOI) at fetal promoters contributes to increased IGF2 in tumors, the magnitude of IGF2 expression suggests the involvement of additional regulatory mechanisms. A microRNA (miRNA) screen of primary Wilms' tumors identified specific overexpression of miR-483-5p, which is embedded within the IGF2 gene. Unexpectedly, the IGF2 mRNA itself is transcriptionally up-regulated by miR-483-5p. A nuclear pool of miR-483-5p binds directly to the 5' untranslated region (UTR) of fetal IGF2 mRNA, enhancing the association of the RNA helicase DHX9 to the IGF2 transcript and promoting IGF2 transcription. Ectopic expression of miR-483-5p in IGF2-dependent sarcoma cells is correlated with increased tumorigenesis in vivo. Together, these observations suggest a functional positive feedback loop of an intronic miRNA on transcription of its host gene.


A BRCA1 deficient-like signature is enriched in breast cancer brain metastases and predicts DNA damage-induced poly (ADP-ribose) polymerase inhibitor sensitivity.

  • Ryan P McMullin‎ et al.
  • Breast cancer research : BCR‎
  • 2014‎

There is an unmet clinical need for biomarkers to identify breast cancer patients at an increased risk of developing brain metastases. The objective is to identify gene signatures and biological pathways associated with human epidermal growth factor receptor 2-positive (HER2+) brain metastasis.


RBF binding to both canonical E2F targets and noncanonical targets depends on functional dE2F/dDP complexes.

  • Michael Korenjak‎ et al.
  • Molecular and cellular biology‎
  • 2012‎

The retinoblastoma (RB) family of proteins regulate transcription. These proteins lack intrinsic DNA-binding activity but are recruited to specific genomic locations through interactions with sequence-specific DNA-binding factors. The best-known target of RB protein (pRB) is the E2F transcription factor; however, many other chromatin-associated proteins have been described that may allow RB family members to act at additional sites. To gain a perspective on the scale of E2F-dependent and E2F-independent functions, we generated genome-wide binding profiles of RBF1 and dE2F proteins in Drosophila larvae. RBF1 and dE2F2 associate with a large number of binding sites at genes with diverse biological functions. In contrast, dE2F1 was detected at a smaller set of promoters, suggesting that it overrides repression by RBF1/dE2F2 at a specific subset of targets. Approximately 15% of RBF1-bound regions lacked consensus E2F-binding motifs. To test whether RBF1 action at these sites is E2F independent, we examined dDP mutant larvae that lack any functional dE2F/dDP heterodimers. As measured by chromatin immunoprecipitation-microarray analysis (ChIP-chip), ChIP-quantitative PCR (qPCR), and cell fractionation, the stable association of RBF1 with chromatin was eliminated in dDP mutants. This requirement for dDP was seen at classic E2F-regulated promoters and at promoters that lacked canonical E2F-binding sites. These results suggest that E2F/DP complexes are essential for all genomic targeting of RBF1.


Systematic functional perturbations uncover a prognostic genetic network driving human breast cancer.

  • Tristan Gallenne‎ et al.
  • Oncotarget‎
  • 2017‎

Prognostic classifiers conceivably comprise biomarker genes that functionally contribute to the oncogenic and metastatic properties of cancer, but this has not been investigated systematically. The transcription factor Fra-1 not only has an essential role in breast cancer, but also drives the expression of a highly prognostic gene set. Here, we systematically perturbed the function of 31 individual Fra-1-dependent poor-prognosis genes and examined their impact on breast cancer growth in vivo. We find that stable shRNA depletion of each of nine individual signature genes strongly inhibits breast cancer growth and aggressiveness. Several factors within this nine-gene set regulate each other's expression, suggesting that together they form a network. The nine-gene set is regulated by estrogen, ERBB2 and EGF signaling, all established breast cancer factors. We also uncover three transcription factors, MYC, E2F1 and TP53, which act alongside Fra-1 at the core of this network. ChIP-Seq analysis reveals that a substantial number of genes are bound, and regulated, by all four transcription factors. The nine-gene set retains significant prognostic power and includes several potential therapeutic targets, including the bifunctional enzyme PAICS, which catalyzes purine biosynthesis. Depletion of PAICS largely cancelled breast cancer expansion, exemplifying a prognostic gene with breast cancer activity. Our data uncover a core genetic and prognostic network driving human breast cancer. We propose that pharmacological inhibition of components within this network, such as PAICS, may be used in conjunction with the Fra-1 prognostic classifier towards personalized management of poor prognosis breast cancer.


REDD1 loss reprograms lipid metabolism to drive progression of RAS mutant tumors.

  • Shuxi Qiao‎ et al.
  • Genes & development‎
  • 2020‎

Human cancers with activating RAS mutations are typically highly aggressive and treatment-refractory, yet RAS mutation itself is insufficient for tumorigenesis, due in part to profound metabolic stress induced by RAS activation. Here we show that loss of REDD1, a stress-induced metabolic regulator, is sufficient to reprogram lipid metabolism and drive progression of RAS mutant cancers. Redd1 deletion in genetically engineered mouse models (GEMMs) of KRAS-dependent pancreatic and lung adenocarcinomas converts preneoplastic lesions into invasive and metastatic carcinomas. Metabolic profiling reveals that REDD1-deficient/RAS mutant cells exhibit enhanced uptake of lysophospholipids and lipid storage, coupled to augmented fatty acid oxidation that sustains both ATP levels and ROS-detoxifying NADPH. Mechanistically, REDD1 loss triggers HIF-dependent activation of a lipid storage pathway involving PPARγ and the prometastatic factor CD36. Correspondingly, decreased REDD1 expression and a signature of REDD1 loss predict poor outcomes selectively in RAS mutant but not RAS wild-type human lung and pancreas carcinomas. Collectively, our findings reveal the REDD1-mediated stress response as a novel tumor suppressor whose loss defines a RAS mutant tumor subset characterized by reprogramming of lipid metabolism, invasive and metastatic progression, and poor prognosis. This work thus provides new mechanistic and clinically relevant insights into the phenotypic heterogeneity and metabolic rewiring that underlies these common cancers.


AKT1low quiescent cancer cells persist after neoadjuvant chemotherapy in triple negative breast cancer.

  • Sheheryar Kabraji‎ et al.
  • Breast cancer research : BCR‎
  • 2017‎

Absence of pathologic complete response (pCR) to neoadjuvant chemotherapy (NACT) correlates with poor long-term survival in patients with triple negative breast cancer (TNBC). These incomplete treatment responses are likely determined by mechanisms that enable cancer cells to resist being killed. However, the detailed characterization of a drug-resistant cancer cell state in residual TNBC tissue after NACT has remained elusive. AKT1low quiescent cancer cells (QCCs) are a quiescent, epigenetically plastic, and chemotherapy-resistant subpopulation initially identified in experimental cancer models. Here, we asked whether QCCs exist in primary tumors from patients with TNBC and persist after treatment with NACT.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: