Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 50 papers

A critical assessment of Mus musculus gene function prediction using integrated genomic evidence.

  • Lourdes Peña-Castillo‎ et al.
  • Genome biology‎
  • 2008‎

Several years after sequencing the human genome and the mouse genome, much remains to be discovered about the functions of most human and mouse genes. Computational prediction of gene function promises to help focus limited experimental resources on the most likely hypotheses. Several algorithms using diverse genomic data have been applied to this task in model organisms; however, the performance of such approaches in mammals has not yet been evaluated.


Identifying cancer specific functionally relevant miRNAs from gene expression and miRNA-to-gene networks using regularized regression.

  • Aziz M Mezlini‎ et al.
  • PloS one‎
  • 2013‎

Identifying microRNA signatures for the different types and subtypes of cancer can result in improved detection, characterization and understanding of cancer and move us towards more personalized treatment strategies. However, using microRNA's differential expression (tumour versus normal) to determine these signatures may lead to inaccurate predictions and low interpretability because of the noisy nature of miRNA expression data. We present a method for the selection of biologically active microRNAs using gene expression data and microRNA-to-gene interaction network. Our method is based on a linear regression with an elastic net regularization. Our simulations show that, with our method, the active miRNAs can be detected with high accuracy and our approach is robust to high levels of noise and missing information. Furthermore, our results on real datasets for glioblastoma and prostate cancer are confirmed by microRNA expression measurements. Our method leads to the selection of potentially functionally important microRNAs. The associations of some of our identified miRNAs with cancer mechanisms are already confirmed in other studies (hypoxia related hsa-mir-210 and apoptosis-related hsa-mir-296-5p). We have also identified additional miRNAs that were not previously studied in the context of cancer but are coherently predicted as active by our method and may warrant further investigation. The code is available in Matlab and R and can be downloaded on http://www.cs.toronto.edu/goldenberg/Anna_Goldenberg/Current_Research.html.


A pair of RNA-binding proteins controls networks of splicing events contributing to specialization of neural cell types.

  • Adam D Norris‎ et al.
  • Molecular cell‎
  • 2014‎

Alternative splicing is important for the development and function of the nervous system, but little is known about the differences in alternative splicing between distinct types of neurons. Furthermore, the factors that control cell-type-specific splicing and the physiological roles of these alternative isoforms are unclear. By monitoring alternative splicing at single-cell resolution in Caenorhabditis elegans, we demonstrate that splicing patterns in different neurons are often distinct and highly regulated. We identify two conserved RNA-binding proteins, UNC-75/CELF and EXC-7/Hu/ELAV, which regulate overlapping networks of splicing events in GABAergic and cholinergic neurons. We use the UNC-75 exon network to discover regulators of synaptic transmission and to identify unique roles for isoforms of UNC-64/Syntaxin, a protein required for synaptic vesicle fusion. Our results indicate that combinatorial regulation of alternative splicing in distinct neurons provides a mechanism to specialize metazoan nervous systems.


Global regulation of mRNA translation and stability in the early Drosophila embryo by the Smaug RNA-binding protein.

  • Linan Chen‎ et al.
  • Genome biology‎
  • 2014‎

Smaug is an RNA-binding protein that induces the degradation and represses the translation of mRNAs in the early Drosophila embryo. Smaug has two identified direct target mRNAs that it differentially regulates: nanos and Hsp83. Smaug represses the translation of nanos mRNA but has only a modest effect on its stability, whereas it destabilizes Hsp83 mRNA but has no detectable effect on Hsp83 translation. Smaug is required to destabilize more than one thousand mRNAs in the early embryo, but whether these transcripts represent direct targets of Smaug is unclear and the extent of Smaug-mediated translational repression is unknown.


Computational purification of individual tumor gene expression profiles leads to significant improvements in prognostic prediction.

  • Gerald Quon‎ et al.
  • Genome medicine‎
  • 2013‎

Tumor heterogeneity is a limiting factor in cancer treatment and in the discovery of biomarkers to personalize it. We describe a computational purification tool, ISOpure, to directly address the effects of variable normal tissue contamination in clinical tumor specimens. ISOpure uses a set of tumor expression profiles and a panel of healthy tissue expression profiles to generate a purified cancer profile for each tumor sample and an estimate of the proportion of RNA originating from cancerous cells. Applying ISOpure before identifying gene signatures leads to significant improvements in the prediction of prognosis and other clinical variables in lung and prostate cancer.


Genome-wide analysis of Staufen-associated mRNAs identifies secondary structures that confer target specificity.

  • John D Laver‎ et al.
  • Nucleic acids research‎
  • 2013‎

Despite studies that have investigated the interactions of double-stranded RNA-binding proteins like Staufen with RNA in vitro, how they achieve target specificity in vivo remains uncertain. We performed RNA co-immunoprecipitations followed by microarray analysis to identify Staufen-associated mRNAs in early Drosophila embryos. Analysis of the localization and functions of these transcripts revealed a number of potentially novel roles for Staufen. Using computational methods, we identified two sequence features that distinguish Staufen's target transcripts from non-targets. First, these Drosophila transcripts, as well as those human transcripts bound by human Staufen1 and 2, have 3' untranslated regions (UTRs) that are 3-4-fold longer than unbound transcripts. Second, the 3'UTRs of Staufen-bound transcripts are highly enriched for three types of secondary structures. These structures map with high precision to previously identified Staufen-binding regions in Drosophila bicoid and human ARF1 3'UTRs. Our results provide the first systematic genome-wide analysis showing how a double-stranded RNA-binding protein achieves target specificity.


A high-throughput pipeline for the production of synthetic antibodies for analysis of ribonucleoprotein complexes.

  • Hong Na‎ et al.
  • RNA (New York, N.Y.)‎
  • 2016‎

Post-transcriptional regulation of mRNAs plays an essential role in the control of gene expression. mRNAs are regulated in ribonucleoprotein (RNP) complexes by RNA-binding proteins (RBPs) along with associated protein and noncoding RNA (ncRNA) cofactors. A global understanding of post-transcriptional control in any cell type requires identification of the components of all of its RNP complexes. We have previously shown that these complexes can be purified by immunoprecipitation using anti-RBP synthetic antibodies produced by phage display. To develop the large number of synthetic antibodies required for a global analysis of RNP complex composition, we have established a pipeline that combines (i) a computationally aided strategy for design of antigens located outside of annotated domains, (ii) high-throughput antigen expression and purification in Escherichia coli, and (iii) high-throughput antibody selection and screening. Using this pipeline, we have produced 279 antibodies against 61 different protein components of Drosophila melanogaster RNPs. Together with those produced in our low-throughput efforts, we have a panel of 311 antibodies for 67 RNP complex proteins. Tests of a subset of our antibodies demonstrated that 89% immunoprecipitate their endogenous target from embryo lysate. This panel of antibodies will serve as a resource for global studies of RNP complexes in Drosophila. Furthermore, our high-throughput pipeline permits efficient production of synthetic antibodies against any large set of proteins.


PERT: a method for expression deconvolution of human blood samples from varied microenvironmental and developmental conditions.

  • Wenlian Qiao‎ et al.
  • PLoS computational biology‎
  • 2012‎

The cellular composition of heterogeneous samples can be predicted using an expression deconvolution algorithm to decompose their gene expression profiles based on pre-defined, reference gene expression profiles of the constituent populations in these samples. However, the expression profiles of the actual constituent populations are often perturbed from those of the reference profiles due to gene expression changes in cells associated with microenvironmental or developmental effects. Existing deconvolution algorithms do not account for these changes and give incorrect results when benchmarked against those measured by well-established flow cytometry, even after batch correction was applied. We introduce PERT, a new probabilistic expression deconvolution method that detects and accounts for a shared, multiplicative perturbation in the reference profiles when performing expression deconvolution. We applied PERT and three other state-of-the-art expression deconvolution methods to predict cell frequencies within heterogeneous human blood samples that were collected under several conditions (uncultured mono-nucleated and lineage-depleted cells, and culture-derived lineage-depleted cells). Only PERT's predicted proportions of the constituent populations matched those assigned by flow cytometry. Genes associated with cell cycle processes were highly enriched among those with the largest predicted expression changes between the cultured and uncultured conditions. We anticipate that PERT will be widely applicable to expression deconvolution strategies that use profiles from reference populations that vary from the corresponding constituent populations in cellular state but not cellular phenotypic identity.


Enhancer identification in mouse embryonic stem cells using integrative modeling of chromatin and genomic features.

  • Chih-yu Chen‎ et al.
  • BMC genomics‎
  • 2012‎

Epigenetic modifications, transcription factor (TF) availability and differences in chromatin folding influence how the genome is interpreted by the transcriptional machinery responsible for gene expression. Enhancers buried in non-coding regions are found to be associated with significant differences in histone marks between different cell types. In contrast, gene promoters show more uniform modifications across cell types. Here we used histone modification and chromatin-associated protein ChIP-Seq data sets in mouse embryonic stem (ES) cells as well as genomic features to identify functional enhancer regions. Using co-bound sites of OCT4, SOX2 and NANOG (co-OSN, validated enhancers) and co-bound sites of MYC and MYCN (limited enhancer activity) as enhancer positive and negative training sets, we performed multinomial logistic regression with LASSO regularization to identify key features.


Binding specificities of human RNA-binding proteins toward structured and linear RNA sequences.

  • Arttu Jolma‎ et al.
  • Genome research‎
  • 2020‎

RNA-binding proteins (RBPs) regulate RNA metabolism at multiple levels by affecting splicing of nascent transcripts, RNA folding, base modification, transport, localization, translation, and stability. Despite their central role in RNA function, the RNA-binding specificities of most RBPs remain unknown or incompletely defined. To address this, we have assembled a genome-scale collection of RBPs and their RNA-binding domains (RBDs) and assessed their specificities using high-throughput RNA-SELEX (HTR-SELEX). Approximately 70% of RBPs for which we obtained a motif bound to short linear sequences, whereas ∼30% preferred structured motifs folding into stem-loops. We also found that many RBPs can bind to multiple distinctly different motifs. Analysis of the matches of the motifs in human genomic sequences suggested novel roles for many RBPs. We found that three cytoplasmic proteins-ZC3H12A, ZC3H12B, and ZC3H12C-bound to motifs resembling the splice donor sequence, suggesting that these proteins are involved in degradation of cytoplasmic viral and/or unspliced transcripts. Structural analysis revealed that the RNA motif was not bound by the conventional C3H1 RNA-binding domain of ZC3H12B. Instead, the RNA motif was bound by the ZC3H12B's PilT N terminus (PIN) RNase domain, revealing a potential mechanism by which unconventional RBDs containing active sites or molecule-binding pockets could interact with short, structured RNA molecules. Our collection containing 145 high-resolution binding specificity models for 86 RBPs is the largest systematic resource for the analysis of human RBPs and will greatly facilitate future analysis of the various biological roles of this important class of proteins.


ME31B globally represses maternal mRNAs by two distinct mechanisms during the Drosophila maternal-to-zygotic transition.

  • Miranda Wang‎ et al.
  • eLife‎
  • 2017‎

In animal embryos, control of development is passed from exclusively maternal gene products to those encoded by the embryonic genome in a process referred to as the maternal-to-zygotic transition (MZT). We show that the RNA-binding protein, ME31B, binds to and represses the expression of thousands of maternal mRNAs during the Drosophila MZT. However, ME31B carries out repression in different ways during different phases of the MZT. Early, it represses translation while, later, its binding leads to mRNA destruction, most likely as a consequence of translational repression in the context of robust mRNA decay. In a process dependent on the PNG kinase, levels of ME31B and its partners, Cup and Trailer Hitch (TRAL), decrease by over 10-fold during the MZT, leading to a change in the composition of mRNA-protein complexes. We propose that ME31B is a global repressor whose regulatory impact changes based on its biological context.


Systematic genetics and single-cell imaging reveal widespread morphological pleiotropy and cell-to-cell variability.

  • Mojca Mattiazzi Usaj‎ et al.
  • Molecular systems biology‎
  • 2020‎

Our ability to understand the genotype-to-phenotype relationship is hindered by the lack of detailed understanding of phenotypes at a single-cell level. To systematically assess cell-to-cell phenotypic variability, we combined automated yeast genetics, high-content screening and neural network-based image analysis of single cells, focussing on genes that influence the architecture of four subcellular compartments of the endocytic pathway as a model system. Our unbiased assessment of the morphology of these compartments-endocytic patch, actin patch, late endosome and vacuole-identified 17 distinct mutant phenotypes associated with ~1,600 genes (~30% of all yeast genes). Approximately half of these mutants exhibited multiple phenotypes, highlighting the extent of morphological pleiotropy. Quantitative analysis also revealed that incomplete penetrance was prevalent, with the majority of mutants exhibiting substantial variability in phenotype at the single-cell level. Our single-cell analysis enabled exploration of factors that contribute to incomplete penetrance and cellular heterogeneity, including replicative age, organelle inheritance and response to stress.


The X-linked splicing regulator MBNL3 has been co-opted to restrict placental growth in eutherians.

  • Thomas Spruce‎ et al.
  • PLoS biology‎
  • 2022‎

Understanding the regulatory interactions that control gene expression during the development of novel tissues is a key goal of evolutionary developmental biology. Here, we show that Mbnl3 has undergone a striking process of evolutionary specialization in eutherian mammals resulting in the emergence of a novel placental function for the gene. Mbnl3 belongs to a family of RNA-binding proteins whose members regulate multiple aspects of RNA metabolism. We find that, in eutherians, while both Mbnl3 and its paralog Mbnl2 are strongly expressed in placenta, Mbnl3 expression has been lost from nonplacental tissues in association with the evolution of a novel promoter. Moreover, Mbnl3 has undergone accelerated protein sequence evolution leading to changes in its RNA-binding specificities and cellular localization. While Mbnl2 and Mbnl3 share partially redundant roles in regulating alternative splicing, polyadenylation site usage and, in turn, placenta maturation, Mbnl3 has also acquired novel biological functions. Specifically, Mbnl3 knockout (M3KO) alone results in increased placental growth associated with higher Myc expression. Furthermore, Mbnl3 loss increases fetal resource allocation during limiting conditions, suggesting that location of Mbnl3 on the X chromosome has led to its role in limiting placental growth, favoring the maternal side of the parental genetic conflict.


Reconstructing cancer phylogenies using Pairtree, a clone tree reconstruction algorithm.

  • Ethan Kulman‎ et al.
  • STAR protocols‎
  • 2022‎

Pairtree is a clone tree reconstruction algorithm that uses somatic point mutations to build clone trees describing the evolutionary history of individual cancers. Using the Pairtree software package, we describe steps to preprocess somatic mutation data, cluster mutations into subclones, search for clone trees, and visualize clone trees. Pairtree builds clone trees using up to 100 samples from a single cancer with at least 30 subclonal populations. For complete details on the use and execution of this protocol, please refer to Wintersinger et al. (2022).


Transcription gets to the checkpoint.

  • John D Laver‎ et al.
  • Cell‎
  • 2015‎

The rapid cell proliferation characteristic of early animal embryos is accomplished with an abbreviated cell cycle and no DNA replication checkpoint. Blythe and Wieschaus provide evidence that nascent zygotic transcription precedes—and may trigger—this checkpoint at the midblastula transition.


The influence of microRNAs and poly(A) tail length on endogenous mRNA-protein complexes.

  • Olivia S Rissland‎ et al.
  • Genome biology‎
  • 2017‎

All mRNAs are bound in vivo by proteins to form mRNA-protein complexes (mRNPs), but changes in the composition of mRNPs during posttranscriptional regulation remain largely unexplored. Here, we have analyzed, on a transcriptome-wide scale, how microRNA-mediated repression modulates the associations of the core mRNP components eIF4E, eIF4G, and PABP and of the decay factor DDX6 in human cells.


Genome-wide analysis of the maternal-to-zygotic transition in Drosophila primordial germ cells.

  • Najeeb U Siddiqui‎ et al.
  • Genome biology‎
  • 2012‎

During the maternal-to-zygotic transition (MZT) vast changes in the embryonic transcriptome are produced by a combination of two processes: elimination of maternally provided mRNAs and synthesis of new transcripts from the zygotic genome. Previous genome-wide analyses of the MZT have been restricted to whole embryos. Here we report the first such analysis for primordial germ cells (PGCs), the progenitors of the germ-line stem cells.


Synthetic antibodies as tools to probe RNA-binding protein function.

  • John D Laver‎ et al.
  • Molecular bioSystems‎
  • 2012‎

RNA-binding proteins (RBPs) have essential roles in post-transcriptional regulation of gene expression. They bind sequence elements in specific mRNAs and control their splicing, transport, localization, translation, and stability. A complete understanding of RBP function requires identification of the target RNAs that an RBP regulates, the mechanisms by which the RBP regulates these targets, and the biological consequences for the cell in which these transactions occur. Antibodies are key tools in such studies: first, mRNA targets of RBPs can be identified by co-immunoprecipitation of RBPs with their associated RNAs followed by microarray analysis or sequencing; second, partner proteins can be identified by immunoprecipitation of the RBP followed by mass spectrometry; third, the mechanisms and functions of RBPs can be inferred from loss-of-function studies employing antibodies that block RBP-RNA interactions. One potentially powerful approach to making antibodies for such studies is the generation of synthetic antibodies using phage display, which involves in vitro selection using a human-designed antibody library to generate antibodies that recognize a target protein. Using two well-characterized Drosophila RNA-binding proteins, Staufen and Smaug, for proof-of-principle, we demonstrate that synthetic antibodies can be generated and used either to perform RNA-coimmunoprecipitations (RIPs) to identify RBP-bound mRNAs, or to block RBP-RNA interactions. Given that synthetic antibody selection protocols are amenable to high-throughput antibody production, these results demonstrate that synthetic antibodies can be powerful tools for genome-wide studies of RBP function.


Shifts in Ribosome Engagement Impact Key Gene Sets in Neurodevelopment and Ubiquitination in Rett Syndrome.

  • Deivid C Rodrigues‎ et al.
  • Cell reports‎
  • 2020‎

Regulation of translation during human development is poorly understood, and its dysregulation is associated with Rett syndrome (RTT). To discover shifts in mRNA ribosomal engagement (RE) during human neurodevelopment, we use parallel translating ribosome affinity purification sequencing (TRAP-seq) and RNA sequencing (RNA-seq) on control and RTT human induced pluripotent stem cells, neural progenitor cells, and cortical neurons. We find that 30% of transcribed genes are translationally regulated, including key gene sets (neurodevelopment, transcription and translation factors, and glycolysis). Approximately 35% of abundant intergenic long noncoding RNAs (lncRNAs) are ribosome engaged. Neurons translate mRNAs more efficiently and have longer 3' UTRs, and RE correlates with elements for RNA-binding proteins. RTT neurons have reduced global translation and compromised mTOR signaling, and >2,100 genes are translationally dysregulated. NEDD4L E3-ubiquitin ligase is translationally impaired, ubiquitinated protein levels are reduced, and protein targets accumulate in RTT neurons. Overall, the dynamic translatome in neurodevelopment is disturbed in RTT and provides insight into altered ubiquitination that may have therapeutic implications.


PRIESSTESS: interpretable, high-performing models of the sequence and structure preferences of RNA-binding proteins.

  • Kaitlin U Laverty‎ et al.
  • Nucleic acids research‎
  • 2022‎

Modelling both primary sequence and secondary structure preferences for RNA binding proteins (RBPs) remains an ongoing challenge. Current models use varied RNA structure representations and can be difficult to interpret and evaluate. To address these issues, we present a universal RNA motif-finding/scanning strategy, termed PRIESSTESS (Predictive RBP-RNA InterpretablE Sequence-Structure moTif regrESSion), that can be applied to diverse RNA binding datasets. PRIESSTESS identifies dozens of enriched RNA sequence and/or structure motifs that are subsequently reduced to a set of core motifs by logistic regression with LASSO regularization. Importantly, these core motifs are easily visualized and interpreted, and provide a measure of RBP secondary structure specificity. We used PRIESSTESS to interrogate new HTR-SELEX data for 23 RBPs with diverse RNA binding modes and captured known primary sequence and secondary structure preferences for each. Moreover, when applying PRIESSTESS to 144 RBPs across 202 RNA binding datasets, 75% showed an RNA secondary structure preference but only 10% had a preference besides unpaired bases, suggesting that most RBPs simply recognize the accessibility of primary sequences.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: