Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Zoonotic intestinal helminths interact with the canine immune system by modulating T cell responses and preventing dendritic cell maturation.

  • Johannes Junginger‎ et al.
  • Scientific reports‎
  • 2017‎

Parasite co-evolution alongside the mammalian immune system gave rise to several modulatory strategies by which they prevent exaggerated pathology and facilitate a longer worm survival. As little is known about the immunoregulatory potential of the zoonotic canine parasites Ancylostoma caninum and Toxocara canis in the natural host, the present study aimed to investigate whether their larval excretory-secretory (ES) products can modulate the canine immune system. We demonstrated TcES to increase the frequency of CD4+ Foxp3high T cells, while both AcES and TcES were associated with elevated Helios expression in Foxp3high lymphocytes. ES products were further capable of inducing IL-10 production by lymphocytes, which was mainly attributed to CD8+ T cells. ES treatment of PBMCs prior to mitogen stimulation inhibited polyclonal proliferation of CD4+ and CD8+ T cells. Moreover, monocyte-derived ES-pulsed dendritic cells reduced upregulation of MHC-II and CD80 in response to lipopolysaccharide. The data showed that regulation of the canine immune system by A. caninum and T. canis larvae comprises the modification of antigen-specific and polyclonal T cell responses and dendritic cell maturation.


TiHo-0906: a new feline mammary cancer cell line with molecular, morphological, and immunocytological characteristics of epithelial to mesenchymal transition.

  • José Luis Granados-Soler‎ et al.
  • Scientific reports‎
  • 2018‎

Feline mammary carcinomas (FMCs) with anaplastic and malignant spindle cells histologically resemble the human metaplastic breast carcinoma (hMBC), spindle-cell subtype. hMBCs display epithelial-to-mesenchymal transition (EMT) characteristics. Herein we report the establishment and characterization of a cell line (TiHoCMglAdcar0906; TiHo-0906) exhibiting EMT-like properties derived from an FMC with anaplastic and malignant spindle cells. Copy-number variations (CNVs) by next-generation sequencing and immunohistochemical characteristics of the cell line and the tumour were compared. The absolute qPCR expression of EMT-related markers HMGA2 and CD44 was determined. The growth, migration, and sensitivity to doxorubicin were assessed. TiHo-0906 CNVs affect several genomic regions harbouring known EMT-, breast cancer-, and hMBCs-associated genes as AKT1, GATA3, CCND2, CDK4, ZEB1, KRAS, HMGA2, ESRP1, MTDH, YWHAZ, and MYC. Most of them were located in amplified regions of feline chromosomes (FCAs) B4 and F2. TiHo-0906 cells displayed an epithelial/mesenchymal phenotype, and high HMGA2 and CD44 expression. Growth and migration remained comparable during subculturing. Low-passaged cells were two-fold more resistant to doxorubicin than high-passaged cells (IC50: 99.97 nM, and 41.22 nM, respectively). The TiHo-0906 cell line was derived from a poorly differentiated cellular subpopulation of the tumour consistently displaying EMT traits. The cell line presents excellent opportunities for studying EMT on FMCs.


Pathology in Captive Wild Felids at German Zoological Gardens.

  • Johannes Junginger‎ et al.
  • PloS one‎
  • 2015‎

This retrospective study provides an overview on spontaneous diseases occurring in 38 captive wild felids submitted for necropsy by German zoological gardens between 2004 and 2013. Species included 18 tigers, 8 leopards, 7 lions, 3 cheetahs and 2 cougars with an age ranging from 0.5 to 22 years. Renal lesions, predominantly tubular alterations (intra-tubular concrements, tubular degeneration, necrosis, intra-tubular cellular debris, proteinaceous casts, dilated tubuli) followed by interstitial (lympho-plasmacytic inflammation, fibrosis, metastatic-suppurative inflammation, eosinophilic inflammation) and glomerular lesions (glomerulonephritis, glomerulosclerosis, amyloidosis) were detected in 33 out of 38 animals (87%). Tumors were found in 19 of 38 felids (50%) with 12 animals showing more than one neoplasm. The tumor prevalence increased with age. Neoplasms originated from endocrine (11), genital (8), lympho-hematopoietic (5) and alimentary organs (4) as well as the mesothelium (3). Most common neoplasms comprised uterine/ovarian leiomyomas (5/2), thyroid adenomas/adenocarcinoma (5/1), pleural mesotheliomas (3), hemangiosarcomas (2) and glossal papillomas (2). Inflammatory changes were frequently encountered in the intestine and the lung. Two young animals displayed metastatic mineralization suggestive of a vitamin D- or calcium intoxication. One tiger exhibited degenerative white matter changes consistent with an entity termed large felid leukoencephalomyelopathy. Various hyperplastic, degenerative and inflammatory changes with minor clinical significance were found in several organs. Summarized, renal lesions followed by neoplastic changes as well as inflammatory changes in lung and gastrointestinal tract represent the most frequent findings in captive wild felids living in German zoological gardens.


Analysis of Copy-Number Variations and Feline Mammary Carcinoma Survival.

  • José Luis Granados-Soler‎ et al.
  • Scientific reports‎
  • 2020‎

Feline mammary carcinomas (FMCs) are highly malignant. As the disease-free survival (DFS) and overall survival (OS) are short, prognostication is crucial. Copy-number variations (CNVs) analysis by next-generation sequencing serves to identify critical cancer-related genomic regions. Thirty-three female cats with FMCs were followed during two years after surgery. Tumours represented tubulopapillary and solid carcinomas encompassing six molecular subtypes. Regardless of the histopathological diagnosis, molecular subtypes showed important differences in survival. Luminal A tumours exhibited the highest DFS (p = 0.002) and cancer-specific OS (p = 0.001), and the lowest amount of CNVs (p = 0.0001). In contrast, basal-like triple-negative FMCs had the worst outcome (DFS, p < 0.0001; and OS, p < 0.00001) and were the most aberrant (p = 0.05). In the multivariate analysis, copy-number losses (CNLs) in chromosome B1 (1-23 Mb) harbouring several tumour-repressors (e.g. CSMD1, MTUS1, MSR1, DBC2, and TUSC3) negatively influenced DFS. Whereas, copy-number gains (CNGs) in B4 (1-29 Mb) and F2 (64-82.3 Mb) comprising epithelial to mesenchymal transition genes and metastasis-promoting transcription factors (e.g. GATA3, VIM, ZEB1, and MYC) negatively influenced DFS and cancer-specific OS. These data evidence an association between specific CNVs in chromosomes B1, B4 and F2, and poor prognosis in FMCs.


Characterization of six canine prostate adenocarcinoma and three transitional cell carcinoma cell lines derived from primary tumor tissues as well as metastasis.

  • Eva-Maria Packeiser‎ et al.
  • PloS one‎
  • 2020‎

Canine prostate adenocarcinoma (PAC) and transitional cell carcinoma (TCC) of prostate and urinary bladder are highly invasive and metastatic tumors of closely neighbored organs. Cell lines are valuable tools to investigate tumor mechanisms and therapeutic approaches in vitro. PAC in dogs is infrequent, difficult to differentiate from TCC and usually characterized by poor prognosis, enhancing the value of the few available cell lines. However, as cell lines adapt to culturing conditions, a thorough characterization, ideally compared to original tissue, is indispensable. Herein, six canine PAC cell lines and three TCC cell lines were profiled by immunophenotype in comparison to respective original tumor tissues. Three of the six PAC cell lines were derived from primary tumor and metastases of the same patient. Further, two of the three TCC cell lines were derived from TCCs invading into or originating from the prostate. Cell biologic parameters as doubling times and chemoresistances to commonly used drugs in cancer treatment (doxorubicin, carboplatin and meloxicam) were assessed. All cell lines were immunohistochemically close to the respective original tissue. Compared to primary tumor cell lines, metastasis-derived cell lines were more chemoresistant to doxorubicin, but equally susceptive to carboplatin treatment. Two cell lines were multiresistant. COX-2 enzyme activity was demonstrated in all cell lines. However, meloxicam inhibited prostaglandin E2 production in only seven of nine cell lines and did neither influence metabolic activity, nor proliferation. The characterized nine cell lines represent excellent tools to investigate PAC as well as TCC in prostate and urinary bladder of the dog. Furthermore, the profiled paired cell lines from PAC primary tumor and metastasis provide the unique opportunity to investigate metastasis-associated changes PAC cells undergo in tumor progression. The combination of nine differently chemoresistant PAC and TCC cell lines resembles the heterogeneity of canine lower urinary tract cancer.


Prevalence of the Prefoldin Subunit 5 Gene Deletion in Canine Mammary Tumors.

  • Silvia Hennecke‎ et al.
  • PloS one‎
  • 2015‎

A somatic deletion at the proximal end of canine chromosome 27 (CFA27) was recently reported in 50% of malignant mammary tumors. This region harbours the tumor suppressor gene prefoldin subunit 5 (PFDN5) and the deletion correlated with a higher Ki-67 score. PFDN5 has been described to repress c-MYC and is, therefore, a candidate tumor-suppressor and cancer-driver gene in canine mammary cancer. Aim of this study was to confirm the recurrent deletion in a larger number of tumors.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: