Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 12 papers out of 12 papers

MASTOR: mixed-model association mapping of quantitative traits in samples with related individuals.

  • Johanna Jakobsdottir‎ et al.
  • American journal of human genetics‎
  • 2013‎

Genetic association studies often sample individuals with known familial relationships in addition to unrelated individuals, and it is common for some individuals to have missing data (phenotypes, genotypes, or covariates). When some individuals in a sample are related, power can be gained by incorporating all individuals in the analysis, including individuals with partially missing data, while properly accounting for the dependence among them. We propose MASTOR, a mixed-model, retrospective score test for genetic association with a quantitative trait. MASTOR achieves high power in samples that contain related individuals by making full use of the relationship information to incorporate partially missing data in the analysis while correcting for dependence. Individuals with available phenotype and covariate information who are not genotyped but have genotyped relatives in the sample can still contribute to the association analysis because of the dependence among genotypes. Similarly, individuals who are genotyped but are missing covariate or phenotype information can contribute to the analysis. MASTOR is valid even when the phenotype model is misspecified and with either random or phenotype-based ascertainment. In simulations, we demonstrate the correct type 1 error of MASTOR, the increase in power that comes from making full use of the relationship information, the robustness to misspecification of the phenotype model, and the improvement in power that comes from modeling the heritability. We show that MASTOR is computationally feasible and practical in genome-wide association studies. We apply MASTOR to data on high-density lipoprotein cholesterol from the Framingham Heart study.


Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility.

  • Jennifer Wessel‎ et al.
  • Nature communications‎
  • 2015‎

Fasting glucose and insulin are intermediate traits for type 2 diabetes. Here we explore the role of coding variation on these traits by analysis of variants on the HumanExome BeadChip in 60,564 non-diabetic individuals and in 16,491 T2D cases and 81,877 controls. We identify a novel association of a low-frequency nonsynonymous SNV in GLP1R (A316T; rs10305492; MAF=1.4%) with lower FG (β=-0.09±0.01 mmol l(-1), P=3.4 × 10(-12)), T2D risk (OR[95%CI]=0.86[0.76-0.96], P=0.010), early insulin secretion (β=-0.07±0.035 pmolinsulin mmolglucose(-1), P=0.048), but higher 2-h glucose (β=0.16±0.05 mmol l(-1), P=4.3 × 10(-4)). We identify a gene-based association with FG at G6PC2 (pSKAT=6.8 × 10(-6)) driven by four rare protein-coding SNVs (H177Y, Y207S, R283X and S324P). We identify rs651007 (MAF=20%) in the first intron of ABO at the putative promoter of an antisense lncRNA, associating with higher FG (β=0.02±0.004 mmol l(-1), P=1.3 × 10(-8)). Our approach identifies novel coding variant associations and extends the allelic spectrum of variation underlying diabetes-related quantitative traits and T2D susceptibility.


Exome-wide association study of plasma lipids in >300,000 individuals.

  • Dajiang J Liu‎ et al.
  • Nature genetics‎
  • 2017‎

We screened variants on an exome-focused genotyping array in >300,000 participants (replication in >280,000 participants) and identified 444 independent variants in 250 loci significantly associated with total cholesterol (TC), high-density-lipoprotein cholesterol (HDL-C), low-density-lipoprotein cholesterol (LDL-C), and/or triglycerides (TG). At two loci (JAK2 and A1CF), experimental analysis in mice showed lipid changes consistent with the human data. We also found that: (i) beta-thalassemia trait carriers displayed lower TC and were protected from coronary artery disease (CAD); (ii) excluding the CETP locus, there was not a predictable relationship between plasma HDL-C and risk for age-related macular degeneration; (iii) only some mechanisms of lowering LDL-C appeared to increase risk for type 2 diabetes (T2D); and (iv) TG-lowering alleles involved in hepatic production of TG-rich lipoproteins (TM6SF2 and PNPLA3) tracked with higher liver fat, higher risk for T2D, and lower risk for CAD, whereas TG-lowering alleles involved in peripheral lipolysis (LPL and ANGPTL4) had no effect on liver fat but decreased risks for both T2D and CAD.


Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci.

  • Chunyu Liu‎ et al.
  • Nature genetics‎
  • 2016‎

Meta-analyses of association results for blood pressure using exome-centric single-variant and gene-based tests identified 31 new loci in a discovery stage among 146,562 individuals, with follow-up and meta-analysis in 180,726 additional individuals (total n = 327,288). These blood pressure-associated loci are enriched for known variants for cardiometabolic traits. Associations were also observed for the aggregation of rare and low-frequency missense variants in three genes, NPR1, DBH, and PTPMT1. In addition, blood pressure associations at 39 previously reported loci were confirmed. The identified variants implicate biological pathways related to cardiometabolic traits, vascular function, and development. Several new variants are inferred to have roles in transcription or as hubs in protein-protein interaction networks. Genetic risk scores constructed from the identified variants were strongly associated with coronary disease and myocardial infarction. This large collection of blood pressure-associated loci suggests new therapeutic strategies for hypertension, emphasizing a link with cardiometabolic risk.


Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels.

  • Adrienne Tin‎ et al.
  • Nature genetics‎
  • 2019‎

Elevated serum urate levels cause gout and correlate with cardiometabolic diseases via poorly understood mechanisms. We performed a trans-ancestry genome-wide association study of serum urate in 457,690 individuals, identifying 183 loci (147 previously unknown) that improve the prediction of gout in an independent cohort of 334,880 individuals. Serum urate showed significant genetic correlations with many cardiometabolic traits, with genetic causality analyses supporting a substantial role for pleiotropy. Enrichment analysis, fine-mapping of urate-associated loci and colocalization with gene expression in 47 tissues implicated the kidney and liver as the main target organs and prioritized potentially causal genes and variants, including the transcriptional master regulators in the liver and kidney, HNF1A and HNF4A. Experimental validation showed that HNF4A transactivated the promoter of ABCG2, encoding a major urate transporter, in kidney cells, and that HNF4A p.Thr139Ile is a functional variant. Transcriptional coregulation within and across organs may be a general mechanism underlying the observed pleiotropy between urate and cardiometabolic traits.


Genome-wide association meta-analysis identifies five novel loci for age-related hearing impairment.

  • Andries Paul Nagtegaal‎ et al.
  • Scientific reports‎
  • 2019‎

Previous research has shown that genes play a substantial role in determining a person's susceptibility to age-related hearing impairment. The existing studies on this subject have different results, which may be caused by difficulties in determining the phenotype or the limited number of participants involved. Here, we have gathered the largest sample to date (discovery n = 9,675; replication n = 10,963; validation n = 356,141), and examined phenotypes that represented low/mid and high frequency hearing loss on the pure tone audiogram. We identified 7 loci that were either replicated and/or validated, of which 5 loci are novel in hearing. Especially the ILDR1 gene is a high profile candidate, as it contains our top SNP, is a known hearing loss gene, has been linked to age-related hearing impairment before, and in addition is preferentially expressed within hair cells of the inner ear. By verifying all previously published SNPs, we can present a paper that combines all new and existing findings to date, giving a complete overview of the genetic architecture of age-related hearing impairment. This is of importance as age-related hearing impairment is highly prevalent in our ageing society and represents a large socio-economic burden.


Rare Functional Variant in TM2D3 is Associated with Late-Onset Alzheimer's Disease.

  • Johanna Jakobsdottir‎ et al.
  • PLoS genetics‎
  • 2016‎

We performed an exome-wide association analysis in 1393 late-onset Alzheimer's disease (LOAD) cases and 8141 controls from the CHARGE consortium. We found that a rare variant (P155L) in TM2D3 was enriched in Icelanders (~0.5% versus <0.05% in other European populations). In 433 LOAD cases and 3903 controls from the Icelandic AGES sub-study, P155L was associated with increased risk and earlier onset of LOAD [odds ratio (95% CI) = 7.5 (3.5-15.9), p = 6.6x10-9]. Mutation in the Drosophila TM2D3 homolog, almondex, causes a phenotype similar to loss of Notch/Presenilin signaling. Human TM2D3 is capable of rescuing these phenotypes, but this activity is abolished by P155L, establishing it as a functionally damaging allele. Our results establish a rare TM2D3 variant in association with LOAD susceptibility, and together with prior work suggests possible links to the β-amyloid cascade.


Association of low-frequency and rare coding-sequence variants with blood lipids and coronary heart disease in 56,000 whites and blacks.

  • Gina M Peloso‎ et al.
  • American journal of human genetics‎
  • 2014‎

Low-frequency coding DNA sequence variants in the proprotein convertase subtilisin/kexin type 9 gene (PCSK9) lower plasma low-density lipoprotein cholesterol (LDL-C), protect against risk of coronary heart disease (CHD), and have prompted the development of a new class of therapeutics. It is uncertain whether the PCSK9 example represents a paradigm or an isolated exception. We used the "Exome Array" to genotype >200,000 low-frequency and rare coding sequence variants across the genome in 56,538 individuals (42,208 European ancestry [EA] and 14,330 African ancestry [AA]) and tested these variants for association with LDL-C, high-density lipoprotein cholesterol (HDL-C), and triglycerides. Although we did not identify new genes associated with LDL-C, we did identify four low-frequency (frequencies between 0.1% and 2%) variants (ANGPTL8 rs145464906 [c.361C>T; p.Gln121*], PAFAH1B2 rs186808413 [c.482C>T; p.Ser161Leu], COL18A1 rs114139997 [c.331G>A; p.Gly111Arg], and PCSK7 rs142953140 [c.1511G>A; p.Arg504His]) with large effects on HDL-C and/or triglycerides. None of these four variants was associated with risk for CHD, suggesting that examples of low-frequency coding variants with robust effects on both lipids and CHD will be limited.


Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria.

  • Alexander Teumer‎ et al.
  • Nature communications‎
  • 2019‎

Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria.


Whole-exome sequencing identifies rare and low-frequency coding variants associated with LDL cholesterol.

  • Leslie A Lange‎ et al.
  • American journal of human genetics‎
  • 2014‎

Elevated low-density lipoprotein cholesterol (LDL-C) is a treatable, heritable risk factor for cardiovascular disease. Genome-wide association studies (GWASs) have identified 157 variants associated with lipid levels but are not well suited to assess the impact of rare and low-frequency variants. To determine whether rare or low-frequency coding variants are associated with LDL-C, we exome sequenced 2,005 individuals, including 554 individuals selected for extreme LDL-C (>98(th) or <2(nd) percentile). Follow-up analyses included sequencing of 1,302 additional individuals and genotype-based analysis of 52,221 individuals. We observed significant evidence of association between LDL-C and the burden of rare or low-frequency variants in PNPLA5, encoding a phospholipase-domain-containing protein, and both known and previously unidentified variants in PCSK9, LDLR and APOB, three known lipid-related genes. The effect sizes for the burden of rare variants for each associated gene were substantially higher than those observed for individual SNPs identified from GWASs. We replicated the PNPLA5 signal in an independent large-scale sequencing study of 2,084 individuals. In conclusion, this large whole-exome-sequencing study for LDL-C identified a gene not known to be implicated in LDL-C and provides unique insight into the design and analysis of similar experiments.


C2 and CFB genes in age-related maculopathy and joint action with CFH and LOC387715 genes.

  • Johanna Jakobsdottir‎ et al.
  • PloS one‎
  • 2008‎

Age-related maculopathy (ARM) is a common cause of visual impairment in the elderly populations of industrialized countries and significantly affects the quality of life of those suffering from the disease. Variants within two genes, the complement factor H (CFH) and the poorly characterized LOC387715 (ARMS2), are widely recognized as ARM risk factors. CFH is important in regulation of the alternative complement pathway suggesting this pathway is involved in ARM pathogenesis. Two other complement pathway genes, the closely linked complement component receptor (C2) and complement factor B (CFB), were recently shown to harbor variants associated with ARM.


The impact of APOE genotype on survival: Results of 38,537 participants from six population-based cohorts (E2-CHARGE).

  • Frank J Wolters‎ et al.
  • PloS one‎
  • 2019‎

Apolipoprotein E is a glycoprotein best known as a mediator and regulator of lipid transport and uptake. The APOE-ε4 allele has long been associated with increased risks of Alzheimer's disease and mortality, but the effect of the less prevalent APOE-ε2 allele on diseases in the elderly and survival remains elusive.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: