Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 17 papers out of 17 papers

Regulatory control of the resolution of DNA recombination intermediates during meiosis and mitosis.

  • Joao Matos‎ et al.
  • Cell‎
  • 2011‎

The efficient and timely resolution of DNA recombination intermediates is essential for bipolar chromosome segregation. Here, we show that the specialized chromosome segregation patterns of meiosis and mitosis, which require the coordination of recombination with cell-cycle progression, are achieved by regulating the timing of activation of two crossover-promoting endonucleases. In yeast meiosis, Mus81-Mms4 and Yen1 are controlled by phosphorylation events that lead to their sequential activation. Mus81-Mms4 is hyperactivated by Cdc5-mediated phosphorylation in meiosis I, generating the crossovers necessary for chromosome segregation. Yen1 is also tightly regulated and is activated in meiosis II to resolve persistent Holliday junctions. In yeast and human mitotic cells, a similar regulatory network restrains these nuclease activities until mitosis, biasing the outcome of recombination toward noncrossover products while also ensuring the elimination of any persistent joint molecules. Mitotic regulation thereby facilitates chromosome segregation while limiting the potential for loss of heterozygosity and sister-chromatid exchanges.


Regulated Crossing-Over Requires Inactivation of Yen1/GEN1 Resolvase during Meiotic Prophase I.

  • Meret Arter‎ et al.
  • Developmental cell‎
  • 2018‎

During meiosis, crossover recombination promotes the establishment of physical connections between homologous chromosomes, enabling their bipolar segregation. To ensure that persistent recombination intermediates are disengaged prior to the completion of meiosis, the Yen1(GEN1) resolvase is strictly activated at the onset of anaphase II. Whether controlled activation of Yen1 is important for meiotic crossing-over is unknown. Here, we show that CDK-mediated phosphorylation of Yen1 averts its pervasive recruitment to recombination intermediates during prophase I. Yen1 mutants that are refractory to phosphorylation resolve DNA joint molecules prematurely and form crossovers independently of MutLγ, the central crossover resolvase during meiosis. Despite bypassing the requirement for MutLγ in joint molecule processing and promoting crossover-specific resolution, unrestrained Yen1 impairs the spatial distribution of crossover events, genome-wide. Thus, active suppression of Yen1 function, and by inference also of Mus81-Mms4(EME1) and Slx1-Slx4(BTBD12) resolvases, avoids precocious resolution of recombination intermediates to enable meiotic crossover patterning.


Network Rewiring of Homologous Recombination Enzymes during Mitotic Proliferation and Meiosis.

  • Philipp Wild‎ et al.
  • Molecular cell‎
  • 2019‎

Homologous recombination (HR) is essential for high-fidelity DNA repair during mitotic proliferation and meiosis. Yet, context-specific modifications must tailor the recombination machinery to avoid (mitosis) or enforce (meiosis) the formation of reciprocal exchanges-crossovers-between recombining chromosomes. To obtain molecular insight into how crossover control is achieved, we affinity purified 7 DNA-processing enzymes that channel HR intermediates into crossovers or noncrossovers from vegetative cells or cells undergoing meiosis. Using mass spectrometry, we provide a global characterization of their composition and reveal mitosis- and meiosis-specific modules in the interaction networks. Functional analyses of meiosis-specific interactors of MutLγ-Exo1 identified Rtk1, Caf120, and Chd1 as regulators of crossing-over. Chd1, which transiently associates with Exo1 at the prophase-to-metaphase I transition, enables the formation of MutLγ-dependent crossovers through its conserved ability to bind and displace nucleosomes. Thus, rewiring of the HR network, coupled to chromatin remodeling, promotes context-specific control of the recombination outcome.


Fork Cleavage-Religation Cycle and Active Transcription Mediate Replication Restart after Fork Stalling at Co-transcriptional R-Loops.

  • Nagaraja Chappidi‎ et al.
  • Molecular cell‎
  • 2020‎

Formation of co-transcriptional R-loops underlies replication fork stalling upon head-on transcription-replication encounters. Here, we demonstrate that RAD51-dependent replication fork reversal induced by R-loops is followed by the restart of semiconservative DNA replication mediated by RECQ1 and RECQ5 helicases, MUS81/EME1 endonuclease, RAD52 strand-annealing factor, the DNA ligase IV (LIG4)/XRCC4 complex, and the non-catalytic subunit of DNA polymerase δ, POLD3. RECQ5 disrupts RAD51 filaments assembled on stalled forks after RECQ1-mediated reverse branch migration, preventing a new round of fork reversal and facilitating fork cleavage by MUS81/EME1. MUS81-dependent DNA breaks accumulate in cells lacking RAD52 or LIG4 upon induction of R-loop formation, suggesting that RAD52 acts in concert with LIG4/XRCC4 to catalyze fork religation, thereby mediating replication restart. The resumption of DNA synthesis after R-loop-associated fork stalling also requires active transcription, the restoration of which depends on MUS81, RAD52, LIG4, and the transcription elongation factor ELL. These findings provide mechanistic insights into transcription-replication conflict resolution.


The CDK1-TOPBP1-PLK1 axis regulates the Bloom's syndrome helicase BLM to suppress crossover recombination in somatic cells.

  • Chiara Balbo Pogliano‎ et al.
  • Science advances‎
  • 2022‎

Bloom's syndrome is caused by inactivation of the BLM helicase, which functions with TOP3A and RMI1-2 (BTR complex) to dissolve recombination intermediates and avoid somatic crossing-over. We show here that crossover avoidance by BTR further requires the activity of cyclin-dependent kinase-1 (CDK1), Polo-like kinase-1 (PLK1), and the DDR mediator protein TOPBP1, which act in the same pathway. Mechanistically, CDK1 phosphorylates BLM and TOPBP1 and promotes the interaction of both proteins with PLK1. This is amplified by the ability of TOPBP1 to facilitate phosphorylation of BLM at sites that stimulate both BLM-PLK1 and BLM-TOPBP1 binding, creating a positive feedback loop that drives rapid BLM phosphorylation at the G2-M transition. In vitro, BLM phosphorylation by CDK/PLK1/TOPBP1 stimulates the dissolution of topologically linked DNA intermediates by BLM-TOP3A. Thus, we propose that the CDK1-TOPBP1-PLK1 axis enhances BTR-mediated dissolution of recombination intermediates late in the cell cycle to suppress crossover recombination and curtail genomic instability.


The Cdc14 Phosphatase Controls Resolution of Recombination Intermediates and Crossover Formation during Meiosis.

  • Paula Alonso-Ramos‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Meiotic defects derived from incorrect DNA repair during gametogenesis can lead to mutations, aneuploidies and infertility. The coordinated resolution of meiotic recombination intermediates is required for crossover formation, ultimately necessary for the accurate completion of both rounds of chromosome segregation. Numerous master kinases orchestrate the correct assembly and activity of the repair machinery. Although much less is known, the reversal of phosphorylation events in meiosis must also be key to coordinate the timing and functionality of repair enzymes. Cdc14 is a crucial phosphatase required for the dephosphorylation of multiple CDK1 targets in many eukaryotes. Mutations that inactivate this phosphatase lead to meiotic failure, but until now it was unknown if Cdc14 plays a direct role in meiotic recombination. Here, we show that the elimination of Cdc14 leads to severe defects in the processing and resolution of recombination intermediates, causing a drastic depletion in crossovers when other repair pathways are compromised. We also show that Cdc14 is required for the correct activity and localization of the Holliday Junction resolvase Yen1/GEN1. We reveal that Cdc14 regulates Yen1 activity from meiosis I onwards, and this function is essential for crossover resolution in the absence of other repair pathways. We also demonstrate that Cdc14 and Yen1 are required to safeguard sister chromatid segregation during the second meiotic division, a late action that is independent of the earlier role in crossover formation. Thus, this work uncovers previously undescribed functions of the evolutionary conserved Cdc14 phosphatase in the regulation of meiotic recombination.


Cell-cycle kinases coordinate the resolution of recombination intermediates with chromosome segregation.

  • Joao Matos‎ et al.
  • Cell reports‎
  • 2013‎

Homologous recombination leads to the formation of DNA joint molecules (JMs) that must be resolved to allow chromosome segregation, but how resolution is temporally coupled with chromosome segregation is unknown. Here, we have analyzed the role of the cell-cycle kinases Cdk and Cdc5 in coordinating these events through their involvement in the phosphoregulation of the Mus81-Mms4 nuclease. By identifying CDC5 and MMS4 mutants that uncouple Mus81-Mms4 activation from cell-cycle progression, we show that JM disengagement, prior to anaphase initiation, safeguards chromosome segregation. By simultaneously stimulating the cleavage of cohesin and activating Mus81-Mms4 at the G2/M transition, Cdk and Cdc5 coordinate the sequential elimination of all chromosomal interactions in preparation for chromosome segregation. Conversely, untimely Cdc5 expression increases crossover frequency due to premature activation of Mus81-Mms4. Therefore, temporal restriction of JM resolution, imposed by Cdk/Cdc5, minimizes the potential for loss of heterozygosity while preventing chromosome missegregation and aneuploidy.


The role of bivalent ions in the regulation of D-loop extension mediated by DMC1 during meiotic recombination.

  • Veronika Altmannova‎ et al.
  • iScience‎
  • 2022‎

During meiosis, programmed DNA double-strand breaks (DSBs) are repaired by homologous recombination. DMC1, a conserved recombinase, plays a central role in this process. DMC1 promotes DNA strand exchange between homologous chromosomes, thus creating the physical linkage between them. Its function is regulated not only by several accessory proteins but also by bivalent ions. Here, we show that whereas calcium ions in the presence of ATP cause a conformational change within DMC1, stimulating its DNA binding and D-loop formation, they inhibit the extension of the invading strand within the D-loop. Based on structural studies, we have generated mutants of two highly conserved amino acids - E162 and D317 - in human DMC1, which are deficient in calcium regulation. In vivo studies of their yeast homologues further showed that they exhibit severe defects in meiosis, thus emphasizing the importance of calcium ions in the regulation of DMC1 function and meiotic recombination.


Functional mapping of yeast genomes by saturated transposition.

  • Agnès H Michel‎ et al.
  • eLife‎
  • 2017‎

Yeast is a powerful model for systems genetics. We present a versatile, time- and labor-efficient method to functionally explore the Saccharomyces cerevisiae genome using saturated transposon mutagenesis coupled to high-throughput sequencing. SAturated Transposon Analysis in Yeast (SATAY) allows one-step mapping of all genetic loci in which transposons can insert without disrupting essential functions. SATAY is particularly suited to discover loci important for growth under various conditions. SATAY (1) reveals positive and negative genetic interactions in single and multiple mutant strains, (2) can identify drug targets, (3) detects not only essential genes, but also essential protein domains, (4) generates both null and other informative alleles. In a SATAY screen for rapamycin-resistant mutants, we identify Pib2 (PhosphoInositide-Binding 2) as a master regulator of TORC1. We describe two antagonistic TORC1-activating and -inhibiting activities located on opposite ends of Pib2. Thus, SATAY allows to easily explore the yeast genome at unprecedented resolution and throughput.


Premature activation of Cdk1 leads to mitotic events in S phase and embryonic lethality.

  • Radoslaw Szmyd‎ et al.
  • Oncogene‎
  • 2019‎

Cell cycle regulation, especially faithful DNA replication and mitosis, are crucial to maintain genome stability. Cyclin-dependent kinase (CDK)/cyclin complexes drive most processes in cellular proliferation. In response to DNA damage, cell cycle surveillance mechanisms enable normal cells to arrest and undergo repair processes. Perturbations in genomic stability can lead to tumor development and suggest that cell cycle regulators could be effective targets in anticancer therapy. However, many clinical trials ended in failure due to off-target effects of the inhibitors used. Here, we investigate in vivo the importance of WEE1- and MYT1-dependent inhibitory phosphorylation of mammalian CDK1. We generated Cdk1AF knockin mice, in which two inhibitory phosphorylation sites are replaced by the non-phosphorylatable amino acids T14A/Y15F. We uncovered that monoallelic expression of CDK1AF is early embryonic lethal in mice and induces S phase arrest accompanied by γH2AX and DNA damage checkpoint activation in mouse embryonic fibroblasts (MEFs). The chromosomal fragmentation in Cdk1AF MEFs does not rely on CDK2 and is partly caused by premature activation of MUS81-SLX4 structure-specific endonuclease complexes, as well as untimely onset of chromosome condensation followed by nuclear lamina disassembly. We provide evidence that tumor development in liver expressing CDK1AF is inhibited. Interestingly, the regulatory mechanisms that impede cell proliferation in CDK1AF expressing cells differ partially from the actions of the WEE1 inhibitor, MK-1775, with p53 expression determining the sensitivity of cells to the drug response. Thus, our work highlights the importance of improved therapeutic strategies for patients with various cancer types and may explain why some patients respond better to WEE1 inhibitors.


An advanced cell cycle tag toolbox reveals principles underlying temporal control of structure-selective nucleases.

  • Julia Bittmann‎ et al.
  • eLife‎
  • 2020‎

Cell cycle tags allow to restrict target protein expression to specific cell cycle phases. Here, we present an advanced toolbox of cell cycle tag constructs in budding yeast with defined and compatible peak expression that allow comparison of protein functionality at different cell cycle phases. We apply this technology to the question of how and when Mus81-Mms4 and Yen1 nucleases act on DNA replication or recombination structures. Restriction of Mus81-Mms4 to M phase but not S phase allows a wildtype response to various forms of replication perturbation and DNA damage in S phase, suggesting it acts as a post-replicative resolvase. Moreover, we use cell cycle tags to reinstall cell cycle control to a deregulated version of Yen1, showing that its premature activation interferes with the response to perturbed replication. Curbing resolvase activity and establishing a hierarchy of resolution mechanisms are therefore the principal reasons underlying resolvase cell cycle regulation.


Fully automated, sequential focused ion beam milling for cryo-electron tomography.

  • Tobias Zachs‎ et al.
  • eLife‎
  • 2020‎

Cryo-electron tomography (cryoET) has become a powerful technique at the interface of structural biology and cell biology, due to its unique ability for imaging cells in their native state and determining structures of macromolecular complexes in their cellular context. A limitation of cryoET is its restriction to relatively thin samples. Sample thinning by cryo-focused ion beam (cryoFIB) milling has significantly expanded the range of samples that can be analyzed by cryoET. Unfortunately, cryoFIB milling is low-throughput, time-consuming and manual. Here, we report a method for fully automated sequential cryoFIB preparation of high-quality lamellae, including rough milling and polishing. We reproducibly applied this method to eukaryotic and bacterial model organisms, and show that the resulting lamellae are suitable for cryoET imaging and subtomogram averaging. Since our method reduces the time required for lamella preparation and minimizes the need for user input, we envision the technique will render previously inaccessible projects feasible.


Dbf4-dependent kinase and the Rtt107 scaffold promote Mus81-Mms4 resolvase activation during mitosis.

  • Lissa N Princz‎ et al.
  • The EMBO journal‎
  • 2017‎

DNA repair by homologous recombination is under stringent cell cycle control. This includes the last step of the reaction, disentanglement of DNA joint molecules (JMs). Previous work has established that JM resolving nucleases are activated specifically at the onset of mitosis. In case of budding yeast Mus81-Mms4, this cell cycle stage-specific activation is known to depend on phosphorylation by CDK and Cdc5 kinases. Here, we show that a third cell cycle kinase, Cdc7-Dbf4 (DDK), targets Mus81-Mms4 in conjunction with Cdc5-both kinases bind to as well as phosphorylate Mus81-Mms4 in an interdependent manner. Moreover, DDK-mediated phosphorylation of Mms4 is strictly required for Mus81 activation in mitosis, establishing DDK as a novel regulator of homologous recombination. The scaffold protein Rtt107, which binds the Mus81-Mms4 complex, interacts with Cdc7 and thereby targets DDK and Cdc5 to the complex enabling full Mus81 activation. Therefore, Mus81 activation in mitosis involves at least three cell cycle kinases, CDK, Cdc5 and DDK Furthermore, tethering of the kinases in a stable complex with Mus81 is critical for efficient JM resolution.


A cell cycle-regulated Slx4-Dpb11 complex promotes the resolution of DNA repair intermediates linked to stalled replication.

  • Dalia Gritenaite‎ et al.
  • Genes & development‎
  • 2014‎

A key function of the cellular DNA damage response is to facilitate the bypass of replication fork-stalling DNA lesions. Template switch reactions allow such a bypass and involve the formation of DNA joint molecules (JMs) between sister chromatids. These JMs need to be resolved before cell division; however, the regulation of this process is only poorly understood. Here, we identify a regulatory mechanism in yeast that critically controls JM resolution by the Mus81-Mms4 endonuclease. Central to this regulation is a conserved complex comprising the scaffold proteins Dpb11 and Slx4 that is under stringent control. Cell cycle-dependent phosphorylation of Slx4 by Cdk1 promotes the Dpb11-Slx4 interaction, while in mitosis, phosphorylation of Mms4 by Polo-like kinase Cdc5 promotes the additional association of Mus81-Mms4 with the complex, thereby promoting JM resolution. Finally, the DNA damage checkpoint counteracts Mus81-Mms4 binding to the Dpb11-Slx4 complex. Thus, Dpb11-Slx4 integrates several cellular inputs and participates in the temporal program for activation of the JM-resolving nuclease Mus81.


Breast cancer Ki-67 expression prediction by digital breast tomosynthesis radiomics features.

  • Alberto Stefano Tagliafico‎ et al.
  • European radiology experimental‎
  • 2019‎

To investigate whether quantitative radiomic features extracted from digital breast tomosynthesis (DBT) are associated with Ki-67 expression of breast cancer.


Functional overlap between the structure-specific nucleases Yen1 and Mus81-Mms4 for DNA-damage repair in S. cerevisiae.

  • Miguel G Blanco‎ et al.
  • DNA repair‎
  • 2010‎

In eukaryotic cells, multiple DNA repair mechanisms respond to a wide variety of DNA lesions. Homologous recombination-dependent repair provides a pathway for dealing with DNA double-strand breaks and replication fork demise. A key step in this process is the resolution of recombination intermediates such as Holliday junctions (HJs). Recently, nucleases from yeast (Yen1) and human cells (GEN1) were identified that can resolve HJ intermediates, in a manner analogous to the E. coli HJ resolvase RuvC. Here, we have analyzed the role of Yen1 in DNA repair in S. cerevisiae, and show that while yen1Delta mutants are repair-proficient, yen1Delta mus81Delta double mutants are exquisitely sensitive to a variety of DNA-damaging agents that disturb replication fork progression. This phenotype is dependent upon RAD52, indicating that toxic recombination intermediates accumulate in the absence of Yen1 and Mus81. After MMS treatment, yen1Delta mus81Delta double mutants arrest with a G2 DNA content and unsegregated chromosomes. These findings indicate that Yen1 can act upon recombination/repair intermediates that arise in MUS81-defective cells following replication fork damage.


Meiotic nuclear pore complex remodeling provides key insights into nuclear basket organization.

  • Grant A King‎ et al.
  • The Journal of cell biology‎
  • 2023‎

Nuclear pore complexes (NPCs) are large proteinaceous assemblies that mediate nuclear compartmentalization. NPCs undergo large-scale structural rearrangements during mitosis in metazoans and some fungi. However, our understanding of NPC remodeling beyond mitosis remains limited. Using time-lapse fluorescence microscopy, we discovered that NPCs undergo two mechanistically separable remodeling events during budding yeast meiosis in which parts or all of the nuclear basket transiently dissociate from the NPC core during meiosis I and II, respectively. Meiosis I detachment, observed for Nup60 and Nup2, is driven by Polo kinase-mediated phosphorylation of Nup60 at its interface with the Y-complex. Subsequent reattachment of Nup60-Nup2 to the NPC core is facilitated by a lipid-binding amphipathic helix in Nup60. Preventing Nup60-Nup2 reattachment causes misorganization of the entire nuclear basket in gametes. Strikingly, meiotic nuclear basket remodeling also occurs in the distantly related fission yeast, Schizosaccharomyces pombe. Our study reveals a conserved and developmentally programmed aspect of NPC plasticity, providing key mechanistic insights into the nuclear basket organization.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: