Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

TERRA-reinforced association of LSD1 with MRE11 promotes processing of uncapped telomeres.

  • Antonio Porro‎ et al.
  • Cell reports‎
  • 2014‎

Telomeres protect chromosome ends from being recognized as sites of DNA damage. Upon telomere shortening or telomere uncapping induced by loss of telomeric repeat-binding factor 2 (TRF2), telomeres elicit a DNA-damage response leading to cellular senescence. Here, we show that following TRF2 depletion, the levels of the long noncoding RNA TERRA increase and LSD1, which binds TERRA, is recruited to telomeres. At uncapped telomeres, LSD1 associates with MRE11, one of the nucleases implicated in the processing of 3' telomeric G overhangs, and we show that LSD1 is required for efficient removal of these structures. The LSD1-MRE11 interaction is reinforced in vivo following TERRA upregulation in TRF2-deficient cells and in vitro by TERRA-mimicking RNA oligonucleotides. Furthermore, LSD1 enhances the nuclease activity of MRE11 in vitro. Our data indicate that recruitment of LSD1 to deprotected telomeres requires MRE11 and is promoted by TERRA. LSD1 stimulates MRE11 catalytic activity and nucleolytic processing of uncapped telomeres.


PRDX1 Counteracts Catastrophic Telomeric Cleavage Events That Are Triggered by DNA Repair Activities Post Oxidative Damage.

  • Wareed Ahmed‎ et al.
  • Cell reports‎
  • 2020‎

Telomeres are prone to damage inflicted by reactive oxygen species (ROS). Oxidized telomeric DNA and nucleotide substrates inhibit telomerase, causing telomere shortening. In addition, ROS can induce telomeric single-strand DNA breaks (SSBs). The peroxiredoxin-PRDX1 is enriched in telomeric chromatin and this counteracts ROS-induced telomere damage. Here, we identify DNA processing after oxidative stress as a main source of telomeric DNA cleavage events in the absence of PRDX1. In PRDX1-depleted cells, poly(ADP-ribose) polymerase (PARP)-dependent telomeric repair is often incomplete, giving persistent SSBs that are converted into telomeric double-strand breaks during replication, leading to rapid telomere shortening. Interestingly, PARP1 inhibition dampens telomere shortening, triggering stabilization of the homologous recombination (HR) factor BRCA1 and RAD51-mediated repair of telomeres. Overall, our results reveal that, in the absence PRDX1, incomplete PARP1-dependent DNA repair and competition between PARP1 and HR cause ROS-induced telomeric catastrophe.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: