2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 22 papers

The role of calcium-dependent protein kinase in hydrogen peroxide, nitric oxide and ABA-dependent cold acclimation.

  • Xiangzhang Lv‎ et al.
  • Journal of experimental botany‎
  • 2018‎

Cold acclimation-induced cold tolerance is associated with the generation of reactive oxygen species (ROS), nitric oxide (NO), and mitogen-activated protein kinases (MPKs) in plants. Here, we hypothesized that calcium-dependent protein kinases (CPKs) induce a crosstalk among ROS, NO, and MPKs, leading to the activation of abscisic acid (ABA) signaling in plant adaptation to cold stress. Results showed that cold acclimation significantly increased the transcript levels of CPK27 along with the biosynthesis of ABA in tomato (Solanum lycopersicum). Silencing of CPK27 compromised acclimation-induced cold tolerance, generation of hydrogen peroxide (H2O2) in the apoplast, NO and ABA accumulation, and the activation of MPK1/2. Crosstalk among H2O2, NO, and MPK1/2 contributes to the homeostasis of H2O2 and NO, activation of MPK1/2, and cold tolerance. ABA is also critical for CPK27-induced cold tolerance, generation of H2O2 and NO, and the activation of MPK1/2. These results strongly suggest that CPK27 may function as a positive regulator of ABA generation by activating the production of ROS and NO as well as MPK1/2 in cold adaptation.


Herbivore-induced Ca2+ signals trigger a jasmonate burst by activating ERF16-mediated expression in tomato.

  • Chaoyi Hu‎ et al.
  • The New phytologist‎
  • 2022‎

Herbivory severely affects plant growth, posing a threat to crop production. Calcium ion (Ca2+ ) signaling and accumulation of jasmonates (JAs) are activated in plant response to herbivore attack, leading to the expression of defense pathways. However, little is known about how the Ca2+ signal modulates JA biosynthesis. We used diverse techniques, including CRISPR/Cas9, UPLC-MS/MS and molecular biology methods to explore the role of ETHYLENE RESPONSE FACTOR 16 in Ca2+ signal-triggered JA burst during herbivore defense in tomato. Here we show that simulated herbivory induces GLUTAMATE RECEPTOR LIKE3.3/3.5 (GLR3.3/3.5)-dependent increases in electrical activity, Ca2+ influx and increases the abundance of CALMODULIN2 (CaM2) and ERF16 transcripts in tomato. The interaction between CaM2 and ERF16 promotes JA biosynthesis by enhancing the transcriptional activity of ERF16, which increases the activation of ERF16 expression and causes expression of LIPOXYGENASE D (LOXD), AOC and 12-OXO-PHYTODIENOIC ACID REDUCTASE 3 (OPR3), the key genes in JA biosynthesis. Mutation of CaM2 results in decreased JA accumulation, together with the expression of JA biosynthesis-related genes, leading to reduced resistance to the cotton bollworm Helicoverpa armigera. These findings reveal a molecular mechanism underpinning the Ca2+ signal-initiated systemic JA burst and emphasize the pivotal role of Ca2+ signal/ERF16 crosstalk in herbivore defense.


Autophagy promotes jasmonate-mediated defense against nematodes.

  • Jinping Zou‎ et al.
  • Nature communications‎
  • 2023‎

Autophagy, as an intracellular degradation system, plays a critical role in plant immunity. However, the involvement of autophagy in the plant immune system and its function in plant nematode resistance are largely unknown. Here, we show that root-knot nematode (RKN; Meloidogyne incognita) infection induces autophagy in tomato (Solanum lycopersicum) and different atg mutants exhibit high sensitivity to RKNs. The jasmonate (JA) signaling negative regulators JASMONATE-ASSOCIATED MYC2-LIKE 1 (JAM1), JAM2 and JAM3 interact with ATG8s via an ATG8-interacting motif (AIM), and JAM1 is degraded by autophagy during RKN infection. JAM1 impairs the formation of a transcriptional activation complex between ETHYLENE RESPONSE FACTOR 1 (ERF1) and MEDIATOR 25 (MED25) and interferes with transcriptional regulation of JA-mediated defense-related genes by ERF1. Furthermore, ERF1 acts in a positive feedback loop and regulates autophagy activity by transcriptionally activating ATG expression in response to RKN infection. Therefore, autophagy promotes JA-mediated defense against RKNs via forming a positive feedback circuit in the degradation of JAMs and transcriptional activation by ERF1.


Tomato HsfA1a plays a critical role in plant drought tolerance by activating ATG genes and inducing autophagy.

  • Yu Wang‎ et al.
  • Autophagy‎
  • 2015‎

Autophagy plays critical roles in plant responses to stress. In contrast to the wealth of information concerning the core process of plant autophagosome assembly, our understanding of the regulation of autophagy is limited. In this study, we demonstrated that transcription factor HsfA1a played a critical role in tomato tolerance to drought stress, in part through its positive role in induction of autophagy under drought stress. HsfA1a expression was induced by drought stress. Virus-induced HsfA1a gene silencing reduced while its overexpression increased plant drought tolerance based on both symptoms and membrane integrity. HsfA1a-silenced plants were more sensitive to endogenous ABA-mediated stomatal closure, while its overexpression lines were resistant under drought stress, indicating that phytohormone ABA did not play a major role in HsfA1a-induced drought tolerance. On the other hand, HsfA1a-silenced plants increased while its overexpression decreased the levels of insoluble proteins which were highly ubiquitinated under drought stress. Furthermore, drought stress induced numerous ATGs expression and autophagosome formation in wild-type plants. The expression of ATG10 and ATG18f, and the formation of autophagosomes were compromised in HsfA1a-silenced plants but were enhanced in HsfA1a-overexpressing plants. Both electrophoretic mobility shift assay and chromatin immunoprecipitation coupled with qPCR analysis revealed that HsfA1a bound to ATG10 and ATG18f gene promoters. Silencing of ATG10 and ATG18f reduced HsfA1a-induced drought tolerance and autophagosome formation in plants overexpressing HsfA1a. These results demonstrate that HsfA1a induces drought tolerance by activating ATG genes and inducing autophagy, which may promote plant survival by degrading ubiquitinated protein aggregates under drought stress.


Crosstalk between Brassinosteroid and Redox Signaling Contributes to the Activation of CBF Expression during Cold Responses in Tomato.

  • Pingping Fang‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2021‎

Brassinosteroids (BRs) play a critical role in plant responses to stress. However, the interplay of BRs and reactive oxygen species signaling in cold stress responses remains unclear. Here, we demonstrate that a partial loss of function in the BR biosynthesis gene DWARF resulted in lower whilst overexpression of DWARF led to increased levels of C-REPEAT BINDING FACTOR (CBF) transcripts. Exposure to cold stress increased BR synthesis and led to an accumulation of brassinazole-resistant 1 (BZR1), a central component of BR signaling. Mutation of BZR1 compromised the cold- and BR-dependent increases in CBFs and RESPIRATORY BURST OXIDASE HOMOLOG 1(RBOH1) transcripts, as well as preventing hydrogen peroxide (H2O2) accumulation in the apoplast. Cold- and BR-induced BZR1 bound to the promoters of CBF1, CBF3 and RBOH1 and promoted their expression. Significantly, suppression of RBOH1 expression compromised cold- and BR-induced accumulation of BZR1 and related increases in CBF transcripts. Moreover, RBOH1-dependent H2O2 production regulated BZR1 accumulation and the levels of CBF transcripts by influencing glutathione homeostasis. Taken together, these results demonstrate that crosstalk between BZR1 and reactive oxygen species mediates cold- and BR-activated CBF expression, leading to cold tolerance in tomato (Solanum lycopersicum).


Strigolactones positively regulate abscisic acid-dependent heat and cold tolerance in tomato.

  • Cheng Chi‎ et al.
  • Horticulture research‎
  • 2021‎

Strigolactones are carotenoid-derived phytohormones that impact plant growth and development in diverse ways. However, the roles of strigolactones in the responses to temperature stresses are largely unknown. Here, we demonstrated that strigolactone biosynthesis is induced in tomato (Solanum lycopersicum) by heat and cold stresses. Compromised strigolactone biosynthesis or signaling negatively affected heat and cold tolerance, while application of the synthetic strigolactone analog GR245DS enhanced heat and cold tolerance. Strigolactone-mediated heat and cold tolerance was associated with the induction of abscisic acid (ABA), heat shock protein 70 (HSP70) accumulation, C-REPEAT BINDING FACTOR 1 (CBF1) transcription, and antioxidant enzyme activity. Importantly, a deficiency in ABA biosynthesis compromised the GR245DS effects on heat and cold stresses and abolished the GR245DS-induced transcription of HSP70, CBF1, and antioxidant-related genes. These results support that strigolactones positively regulate tomato heat and cold tolerance and that they do so at least partially by the induction of CBFs and HSPs and the antioxidant response in an ABA-dependent manner.


The transcription factor SPL13 mediates strigolactone suppression of shoot branching by inhibiting cytokinin synthesis in Solanum lycopersicum.

  • Shangyu Chen‎ et al.
  • Journal of experimental botany‎
  • 2023‎

Plant architecture imposes a large impact on crop yield. IDEAL PLANT ARCHITECTURE 1 (IPA1), which encodes a SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factor, is a target of molecular design for improving grain yield. However, the roles of SPL transcription factors in regulating tomato (Solanum lycopersicum) plant architecture are unclear. Here, we show that the expression of SPL13 is down-regulated in the lateral buds of strigolactone (SL)-deficient ccd mutants and is induced by GR24 (a synthetic analog of SL). Knockout of SPL13 by CRISPR/Cas9 resulted in higher levels of cytokinins (CKs) and transcripts of the CK synthesis gene ISOPENTENYL TRANSFERASES 1 (IPT1) in the stem nodes, and more growth of lateral buds. GR24 suppresses CK synthesis and lateral bud growth in ccd mutants, but is not effective in spl13 mutants. On the other hand, silencing of the IPT1 gene inhibited bud growth of spl13 mutants. Interestingly, SL levels in root extracts and exudates are significantly increased in spl13 mutants. Molecular studies indicated that SPL13 directly represses the transcription of IPT1 and the SL synthesis genes CAROTENOID CLEAVAGE DIOXYGENASE 7 (CCD7) and MORE AXILLARY GROWTH 1 (MAX1). The results demonstrate that SPL13 acts downstream of SL to suppress lateral bud growth by inhibiting CK synthesis in tomato. Tuning the expression of SPL13 is a potential approach for decreasing the number of lateral shoots in tomato.


Genome-Wide Identification and Expression Analysis of Calcium-dependent Protein Kinase in Tomato.

  • Zhangjian Hu‎ et al.
  • Frontiers in plant science‎
  • 2016‎

Calcium-dependent protein kinases (CDPKs) play critical roles in regulating growth, development and stress response in plants. Information about CDPKs in tomato, however, remains obscure although it is one of the most important model crops in the world. In this study, we performed a bioinformatics analysis of the entire tomato genome and identified 29 CDPK genes. These CDPK genes are found to be located in 12 chromosomes, and could be divided into four groups. Analysis of the gene structure and splicing site reflected high structure conservation within different CDPK gene groups both in the exon-intron pattern and mRNA splicing. Transcripts of most CDPK genes varied with plant organs and developmental stages and their transcripts could be differentially induced by abscisic acid (ABA), brassinosteroids (BRs), methyl jasmonate (MeJA), and salicylic acid (SA), as well as after exposure to heat, cold, and drought, respectively. To our knowledge, this is the first report about the genome-wide analysis of the CDPK gene family in tomato, and the findings obtained offer a clue to the elaborated regulatory role of CDPKs in plant growth, development and stress response in tomato.


Unraveling Main Limiting Sites of Photosynthesis under Below- and Above-Ground Heat Stress in Cucumber and the Alleviatory Role of Luffa Rootstock.

  • Hao Li‎ et al.
  • Frontiers in plant science‎
  • 2016‎

Photosynthesis is one of the most thermo-sensitive processes in plants. Although the severity of heat stress could be attenuated by grafting approach, the primary damaged site of photosynthesis system under heat stress and the regulatory mechanism of rootstock-mediated heat tolerance are poorly understood. In the current study, cucumber plants grafted onto their own roots and heat-tolerant luffa roots were exposed to root-zone heat (25/40°C) and aerial heat (40/25°C) individually and in combination (40/40°C) to understand the response of photosynthetic process by investigating energy absorption and distribution, electron transport in photosystem (PS) II and I, and CO2 assimilation. According to the results, root-zone heat stress inhibited photosynthesis mainly through decreasing Rubisco activity, while aerial heat stress mainly through inhibiting PSII acceptor side. The imbalance in light absorption and utilization resulted in accumulation of reactive oxygen species that caused damage to photosynthetic apparatus, forming a vicious cycle. On the contrary, grafting cucumber onto heat-tolerant luffa rootstock alleviated heat-induced photosynthetic inhibition and oxidative stress by maintaining higher root vitality, HSP70 accumulation, and antioxidant potential.


Stimulated leaf dark respiration in tomato in an elevated carbon dioxide atmosphere.

  • Xin Li‎ et al.
  • Scientific reports‎
  • 2013‎

It is widely accepted that leaf dark respiration is a determining factor for the growth and maintenance of plant tissues and the carbon cycle. However, the underlying effect and mechanism of elevated CO2 concentrations ([CO2]) on dark respiration remain unclear. In this study, tomato plants grown at elevated [CO2] showed consistently higher leaf dark respiratory rate, as compared with ambient control plants. The increased respiratory capacity was driven by a greater abundance of proteins, carbohydrates, and transcripts involved in pathways of glycolysis carbohydrate metabolism, the tricarboxylic acid cycle, and mitochondrial electron transport energy metabolism. This study provides substantial evidence in support of the concept that leaf dark respiration is increased by elevated [CO2] in tomato plants and suggests that the increased availability of carbohydrates and the increased energy status are involved in the increased rate of dark respiration in response to elevated [CO2].


A Method of High Throughput Monitoring Crop Physiology Using Chlorophyll Fluorescence and Multispectral Imaging.

  • Heng Wang‎ et al.
  • Frontiers in plant science‎
  • 2018‎

We present a high throughput crop physiology condition monitoring system and corresponding monitoring method. The monitoring system can perform large-area chlorophyll fluorescence imaging and multispectral imaging. The monitoring method can determine the crop current condition continuously and non-destructively. We choose chlorophyll fluorescence parameters and relative reflectance of multispectral as the indicators of crop physiological status. Using tomato as experiment subject, the typical crop physiological stress, such as drought, nutrition deficiency and plant disease can be distinguished by the monitoring method. Furthermore, we have studied the correlation between the physiological indicators and the degree of stress. Besides realizing the continuous monitoring of crop physiology, the monitoring system and method provide the possibility of machine automatic diagnosis of the plant physiology. Highlights: A newly designed high throughput crop physiology monitoring system and the corresponding monitoring method are described in this study. Different types of stress can induce distinct fluorescence and spectral characteristics, which can be used to evaluate the physiological status of plants.


The Chromosome-Scale Genome of Melon Dissects Genetic Architecture of Important Agronomic Traits.

  • Jinghua Yang‎ et al.
  • iScience‎
  • 2020‎

Comparative and evolutionary genomics analyses are the powerful tools to provide mechanistic insights into important agronomic traits. Here, we completed a chromosome-scale assembly of the "neglected" but vital melon subspecies Cucumis melo ssp. agrestis using single-molecule real-time sequencing, Hi-C, and an ultra-dense genetic map. Comparative genomics analyses identified two targeted genes, UDP-sugar pyrophosphorylase and α-galactosidase, that were selected during evolution for specific phloem transport of oligosaccharides in Cucurbitaceae. Association analysis of transcriptome and the DNA methylation patterns revealed the epigenetic regulation of sucrose accumulation in developing fruits. We constructed the melon recombinant inbred lines to uncover Alkaline/Neutral Invertase (CINV), Sucrose-Phosphatase 2 (SPP2), α-galactosidase, and β-galactosidase loci related to sucrose accumulation and an LRR receptor-like serine/threonine-protein kinase associated with gummy stem blight resistance. This study provides essential genomic resources enabling functional genomics studies and the genomics-informed breeding pipelines for improving the fruit quality and disease resistance traits.


Physiological and Transcriptome Responses to Combinations of Elevated CO2 and Magnesium in Arabidopsis thaliana.

  • Yaofang Niu‎ et al.
  • PloS one‎
  • 2016‎

The unprecedented rise in atmospheric CO2 concentration and injudicious fertilization or heterogeneous distribution of Mg in the soil warrant further research to understand the synergistic and holistic mechanisms involved in the plant growth regulation. This study investigated the influence of elevated CO2 (800 μL L(-1)) on physiological and transcriptomic profiles in Arabidopsis cultured in hydroponic media treated with 1 μM (low), 1000 μM (normal) and 10,000 μM (high) Mg2+. Following 7-d treatment, elevated CO2 increased the shoot growth and chlorophyll content under both low and normal Mg supply, whereas root growth was improved exclusively under normal Mg nutrition. Notably, the effect of elevated CO2 on mineral homeostasis in both shoots and roots was less than that of Mg supply. Irrespective of CO2 treatment, high Mg increased number of young leaf but decreased root growth and absorption of P, K, Ca, Fe and Mn whereas low Mg increased the concentration of P, K, Ca and Fe in leaves. Transcriptomics results showed that elevated CO2 decreased the expression of genes related to cell redox homeostasis, cadmium response, and lipid localization, but enhanced signal transduction, protein phosphorylation, NBS-LRR disease resistance proteins and subsequently programmed cell death in low-Mg shoots. By comparison, elevated CO2 enhanced the response of lipid localization (mainly LTP transfer protein/protease inhibitor), endomembrane system, heme binding and cell wall modification in high-Mg roots. Some of these transcriptomic results are substantially in accordance with our physiological and/or biochemical analysis. The present findings broaden our current understanding on the interactive effect of elevated CO2 and Mg levels in the Arabidopsis, which may help to design the novel metabolic engineering strategies to cope with Mg deficiency/excess in crops under elevated CO2.


Phosphorus and magnesium interactively modulate the elongation and directional growth of primary roots in Arabidopsis thaliana (L.) Heynh.

  • Yaofang Niu‎ et al.
  • Journal of experimental botany‎
  • 2015‎

A balanced supply of essential nutrients is an important factor influencing root architecture in many plants, yet data related to the interactive effects of two nutrients on root growth are limited. Here, we investigated the interactive effect between phosphorus (P) and magnesium (Mg) on root growth of Arabidopsis grown in pH-buffered agar medium at different P and Mg levels. The results showed that elongation and deviation of primary roots were directly correlated with the amount of P added to the medium but could be modified by the Mg level, which was related to the root meristem activity and stem-cell division. High P enhanced while low P decreased the tip-focused fluorescence signal of auxin biosynthesis, transport, and redistribution during elongation of primary roots; these effects were greater under low Mg than under high Mg. The altered root growth in response to P and Mg supply was correlated with AUX1, PIN2, and PIN3 mRNA abundance and expression and the accumulation of the protein. Application of either auxin influx inhibitor or efflux inhibitor inhibited the elongation and increased the deviation angle of primary roots, and decreased auxin level in root tips. Furthermore, the auxin-transport mutants aux1-22 and eir1-1 displayed reduced root growth and increased the deviation angle. Our data suggest a profound effect of the combined supply of P and Mg on the development of root morphology in Arabidopsis through auxin signals that modulate the elongation and directional growth of primary root and the expression of root differentiation and development genes.


Brassinosteroids play a critical role in the regulation of pesticide metabolism in crop plants.

  • Yanhong Zhou‎ et al.
  • Scientific reports‎
  • 2015‎

Pesticide residues in agricultural produce pose a threat to human health worldwide. Although the detoxification mechanisms for xenobiotics have been extensively studied in mammalian cells, information about the regulation network in plants remains elusive. Here we show that brassinosteroids (BRs), a class of natural plant hormones, decreased residues of common organophosphorus, organochlorine and carbamate pesticides by 30-70% on tomato, rice, tea, broccoli, cucumber, strawberry, and other plants when treated externally. Genome-wide microarray analysis showed that fungicide chlorothalonil (CHT) and BR co-upregulated 301 genes, including a set of detoxifying genes encoding cytochrome P450, oxidoreductase, hydrolase and transferase in tomato plants. The level of BRs was closely related to the respiratory burst oxidase 1 (RBOH1)-encoded NADPH oxides-dependent H2O2 production, glutathione biosynthesis and the redox homeostasis, and the activity of glutathione S-transferase (GST). Gene silencing treatments showed that BRs decreased pesticide residues in plants likely by promoting their metabolism through a signaling pathway involving BRs-induced H2O2 production and cellular redox change. Our study provided a novel approach for minimizing pesticide residues in crops by exploiting plants' own detoxification mechanisms.


Strigolactones positively regulate defense against root-knot nematodes in tomato.

  • Xuechen Xu‎ et al.
  • Journal of experimental botany‎
  • 2019‎

Strigolactones (SLs) are carotenoid-derived phytohormones that are known to influence various aspects of plant growth and development. As root-derived signals, SLs can enhance symbiosis between plants and arbuscular mycorrhizal fungi (AMF). However, little is known about the roles of SLs in plant defense against soil-borne pathogens. Here, we determined that infection with root-knot nematodes (RKNs; Meloidogyne incognita) induced SL biosynthesis in roots of tomato (Solanum lycopersicum). Silencing of SL biosynthesis genes compromised plant defense against RKNs, whilst application of the SL analog racGR24 enhanced it. Accumulation of endogenous jasmonic acid (JA) and abscisic acid (ABA) in the roots in response to RKN infection was enhanced by silencing of SL biosynthetic genes and was suppressed by application of racGR24. Genetic evidence showed that JA was a positive regulator of defense against RKNs while ABA was a negative regulator. In addition, racGR24 enhanced the defense against nematode in a JA-deficient mutant but not in an ABA-deficient mutant. Silencing of SL biosynthetic genes resulted in up-regulation of MYC2, which negatively regulated defense against RKNs. Our results demonstrate that SLs play a positive role in nematode defense in tomato and that MYC2 negatively regulates this defense, potentially by mediating hormone crosstalk among SLs, ABA and JA.


Systemic Root-Shoot Signaling Drives Jasmonate-Based Root Defense against Nematodes.

  • Guoting Wang‎ et al.
  • Current biology : CB‎
  • 2019‎

Shoot-root communication is crucial for plant adaptation to environmental changes. However, the extensive crosstalk between shoots and roots that controls the synthesis of jasmonates (JAs), in order to enhance defense responses against rhizosphere herbivores, remains poorly understood. Here, we report that the root-knot nematode (RKN) Meloidogyne incognita induces the systemic transmission of electrical and reactive oxygen species (ROS) signals from attacked tomato roots to the leaves, leading to an increased accumulation of JAs in the leaves. Grafting of 1.0-cm stem sections from mutants lacking GLUTAMATE RECEPTOR-LIKE 3.5 or the mutants deficient in RESPIRATORY BURST OXIDASE HOMOLOG 1 abolished the RKN-induced electrical signals and associated ROS and JA accumulation in the upper stems and leaves with attenuated resistance to RKN. Furthermore, the absence of systemic transmission of electrical and ROS signals compromised the activation of mitogen-activated protein kinases (MPKs) 1/2 in leaves. Silencing MPK1 or MPK2 abolished RKN-induced accumulation of JAs and associated resistance. These findings reveal a systemic signaling loop that integrates electrical, ROS, and JA signals to enhance the resistance in distal organs via root-shoot-root communication.


Transcriptomic and genetic approaches reveal an essential role of the NAC transcription factor SlNAP1 in the growth and defense response of tomato.

  • Jiao Wang‎ et al.
  • Horticulture research‎
  • 2020‎

With global climate change, plants are frequently being exposed to various stresses, such as pathogen attack, drought, and extreme temperatures. Transcription factors (TFs) play crucial roles in numerous plant biological processes; however, the functions of many tomato (Solanum lycopersicum L.) TFs that regulate plant responses to multiple stresses are largely unknown. Here, using an RNA-seq approach, we identified SlNAP1, a NAC TF-encoding gene, which was strongly induced by various stresses. By generating SlNAP1 transgenic lines and evaluating their responses to biotic and abiotic stresses in tomato, we found that SlNAP1-overexpressing plants showed significantly enhanced defense against two widespread bacterial diseases, leaf speck disease, caused by Pseudomonas syringae pv. tomato (Pst) DC3000, and root-borne bacterial wilt disease, caused by Ralstonia solanacearum. In addition, SlNAP1 overexpression dramatically improved drought tolerance in tomato. Although the SlNAP1-overexpressing plants were shorter than the wild-type plants during the early vegetative stage, eventually, their fruit yield increased by 10.7%. Analysis of different hormone contents revealed a reduced level of physiologically active gibberellins (GAs) and an increased level of salicylic acid (SA) and abscisic acid (ABA) in the SlNAP1-overexpressing plants. Moreover, EMSAs and ChIP-qPCR assays showed that SlNAP1 directly activated the transcription of multiple genes involved in GA deactivation and both SA and ABA biosynthesis. Our findings reveal that SlNAP1 is a positive regulator of the tomato defense response against multiple stresses and thus may be a potential breeding target for improving crop yield and stress resistance.


HY5 functions as a systemic signal by integrating BRC1-dependent hormone signaling in tomato bud outgrowth.

  • Han Dong‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

Light plays an important role in determining plant architecture, which greatly influences crop yield. However, the precise mechanisms by which light signaling regulates bud outgrowth remain to be identified. Here, we show that light regulates bud outgrowth via both HY5 and brassinosteroid (BR)-dependent pathways in tomato. Inactivation of the red-light photoreceptor PHYB, or deficiencies in PHYB or the blue-light photoreceptor CRY1a, inhibits bud outgrowth and leads to decreased accumulation of HY5 protein and increased transcript level of BRANCHED1 (BRC1), a central integrator of branching signals. HY5, functioning as a mobile systemic signal from leaves, promotes bud outgrowth by directly suppressing BRC1 transcript and activating the transcript of BR biosynthesis genes within the lateral buds in tomato. Furthermore, BRC1 prevents the accumulation of cytokinin (CK) and gibberellin (GA) by directly inhibiting the transcript of CK synthesis gene LOG4, while increasing the transcript levels of CK and GA degradation genes (CKX7, GA2ox4, and GA2ox5), leading to an arrest of bud outgrowth. Moreover, bud outgrowth occurs predominantly in the day due to the suppression of BRC1 transcript by HY5. These findings demonstrate that light-inducible HY5 acts as a systemic signaling factor in fine-tuning the bud outgrowth of tomato.


A combined approach of high-throughput sequencing and degradome analysis reveals tissue specific expression of microRNAs and their targets in cucumber.

  • Weihua Mao‎ et al.
  • PloS one‎
  • 2012‎

MicroRNAs (miRNAs) are endogenous small RNAs playing an important regulatory function in plant development and stress responses. Among them, some are evolutionally conserved in plant and others are only expressed in certain species, tissue or developmental stages. Cucumber is among the most important greenhouse species in the world, but only a limited number of miRNAs from cucumber have been identified and the experimental validation of the related miRNA targets is still lacking. In this study, two independent small RNA libraries from cucumber leaves and roots were constructed, respectively, and sequenced with the high-throughput Illumina Solexa system. Based on sequence similarity and hairpin structure prediction, a total of 29 known miRNA families and 2 novel miRNA families containing a total of 64 miRNA were identified. QRT-PCR analysis revealed that some of the cucumber miRNAs were preferentially expressed in certain tissues. With the recently developed 'high throughput degradome sequencing' approach, 21 target mRNAs of known miRNAs were identified for the first time in cucumber. These targets were associated with development, reactive oxygen species scavenging, signaling transduction and transcriptional regulation. Our study provides an overview of miRNA expression profile and interaction between miRNA and target, which will help further understanding of the important roles of miRNAs in cucumber plants.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: