Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 26 papers

2-Ethoxystypandrone, a novel small-molecule STAT3 signaling inhibitor from Polygonum cuspidatum, inhibits cell growth and induces apoptosis of HCC cells and HCC Cancer stem cells.

  • Wuguo Li‎ et al.
  • BMC complementary and alternative medicine‎
  • 2019‎

Signal transducer and activator of transcription 3 (STAT3) is an oncogene constitutively activated in hepatocellular carcinoma (HCC) cells and HCC cancer stem cells (CSCs). Constitutively activated STAT3 plays a pivotal role in holding cancer stemness of HCC CSCs, which are essential for hepatoma initiation, relapse, metastasis and drug resistance. Therefore, STAT3 has been validated as a novel anti-cancer drug target and the strategies targeting HCC CSCs may bring new hopes to HCC therapy. This study aimed to isolate and identify small-molecule STAT3 signaling inhibitors targeting CSCs from the ethyl acetate (EtOAc) extract of the roots of Polygonum cuspidatum and to evaluate their in vitro anti-cancer activities.


Short-term tetrabromobisphenol A exposure promotes fibrosis of human uterine fibroid cells in a 3D culture system through TGF-beta signaling.

  • Jingli Liu‎ et al.
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology‎
  • 2022‎

Tetrabromobisphenol A (TBBPA), a derivative of BPA, is a ubiquitous environmental contaminant with weak estrogenic properties. In women, uterine fibroids are highly prevalent estrogen-responsive tumors often with excessive accumulation of extracellular matrix (ECM) and may be the target of environmental estrogens. We have found that BPA has profibrotic effects in vitro, in addition to previous reports of the in vivo fibrotic effects of BPA in mouse uterus. However, the role of TBBPA in fibrosis is unclear. To investigate the effects of TBBPA on uterine fibrosis, we developed a 3D human uterine leiomyoma (ht-UtLM) spheroid culture model. Cell proliferation was evaluated in 3D ht-UtLM spheroids following TBBPA (10-6 -200 µM) administration at 48 h. Fibrosis was assessed using a Masson's Trichrome stain and light microscopy at 7 days of TBBPA (10-3  µM) treatment. Differential expression of ECM and fibrosis genes were determined using RT² Profiler™ PCR arrays. Network and pathway analyses were conducted using Ingenuity Pathway Analysis. The activation of pathway proteins was analyzed by a transforming growth factor-beta (TGFB) protein array. We found that TBBPA increased cell proliferation and promoted fibrosis in 3D ht-UtLM spheroids with increased deposition of collagens. TBBPA upregulated the expression of profibrotic genes and corresponding proteins associated with the TGFB pathway. TBBPA activated TGFB signaling through phosphorylation of TGFBR1 and downstream effectors-small mothers against decapentaplegic -2 and -3 proteins (SMAD2 and SMAD3). The 3D ht-UtLM spheroid model is an effective system for studying environmental agents on human uterine fibrosis. TBBPA can promote fibrosis in uterine fibroid through TGFB/SMAD signaling.


Novel Insights Into Bacterial Dimethylsulfoniopropionate Catabolism in the East China Sea.

  • Jingli Liu‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

The compatible solute dimethylsulfoniopropionate (DMSP), made by many marine organisms, is one of Earth's most abundant organosulfur molecules. Many marine bacteria import DMSP and can degrade it as a source of carbon and/or sulfur via DMSP cleavage or DMSP demethylation pathways, which can generate the climate active gases dimethyl sulfide (DMS) or methanthiol (MeSH), respectively. Here we used culture-dependent and -independent methods to study bacteria catabolizing DMSP in the East China Sea (ECS). Of bacterial isolates, 42.11% showed DMSP-dependent DMS (Ddd+) activity, and 12.28% produced detectable levels of MeSH. Interestingly, although most Ddd+ isolates were Alphaproteobacteria (mainly Roseobacters), many gram-positive Actinobacteria were also shown to cleave DMSP producing DMS. The mechanism by which these Actinobacteria cleave DMSP is unknown, since no known functional ddd genes have been identified in genome sequences of Ddd+ Microbacterium and Agrococcus isolates or in any other sequenced Actinobacteria genomes. Gene probes to the DMSP demethylation gene dmdA and the DMSP lyase gene dddP demonstrated that these DMSP-degrading genes are abundant and widely distributed in ECS seawaters. dmdA was present in relatively high proportions in both surface (19.53% ± 6.70%) and bottom seawater bacteria (16.00% ± 8.73%). In contrast, dddP abundance positively correlated with chlorophyll a, and gradually decreased with the distance from land, which implies that the bacterial DMSP lyase gene dddP might be from bacterial groups that closely associate with phytoplankton. Bacterial community analysis showed positive correlations between Rhodobacteraceae abundance and concentrations of DMS and DMSP, further confirming the link between this abundant bacterial class and the environmental DMSP cycling.


Expression profile and bioinformatics analysis of circular RNAs in acute ischemic stroke in a South Chinese Han population.

  • Shenghua Li‎ et al.
  • Scientific reports‎
  • 2020‎

Recent studies have found that circular RNAs (circRNAs) play crucial roles not only in the normal growth and the development of different tissues and organs but also in the pathogenesis and progression of various disorders. However, the expression patterns and the function of circRNAs in acute ischemic stroke (AIS) in the South Chinese Han population are unclear. In the present study, RNA sequencing (RNA-seq) data was generated from 3 AIS patients and 3 healthy controls. The circRNAs were detected and identified by CIRI2 and Find_circ software. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analyses were used to detect the expression of circRNAs. Meanwhile, the potential diagnostic value of the selected circRNAs for AIS was assessed by generating receiver operating characteristic (ROC) curve with area under curve (AUC). The bioinformatic analysis of the host genes of differentially expressed (DE) circRNAs was performed by gene ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, KOBAS for pathway analysis and regulatory network analysis. miRNA-circRNA and miRNA-mRNA interactions were predicted by using TargetScan, miRanda and starBase. CircRNA-miRNA-mRNA interaction networks were created with Cytoscape. Our result showed that there were 2270 DE circRNAs between AIS patients and healthy controls. Among them, 659 were found upregulated and 1611 were downregulated. Bioinformatic analysis showed that the DE circRNAs were related to the following biological processes: endocytosis, energy metabolism, apoptosis, FoxO signaling pathway, platelet activation, neurotrophin signaling pathway and VEGF signaling pathway, which may be associated with the pathological of AIS. Three randomly selected circRNAs were successfully validated by qRT-PCR. The results show that hsa_circ_0005548 was significantly upregulated, while hsa_circ_0000607 and hsa_circ_0002465 were significantly downregulated in AIS. Furthermore, the AUC values for hsa_circ_005548, hsa_circ_0000607 and hsa_circ_0002465 were 0.51, 0.75 and 0.69, respectively, suggesting that hsa_circ_0000607 and hsa_circ_0002465 could be potential biomarkers for AIS. In addition, Bcl2 was predicted to be a direct target of miR-337-3p, and hsa_circRNA_0000607 was predicted to act as a sponge for miR-337-3p. Thus, hsa_circ_0000607 may be involved in AIS by regulating the miR-337-3p/Bcl2 axis. Collectively, our findings indicate that numerous dysregulated circRNAs may play pivotal functional roles in AIS and hsa_circ_0000607 may play a crucial role in the pathogenesis and progression of AIS by regulating the miR-337-3p/Bcl2 axis.


Prolonged cadmium exposure alters benign uterine fibroid cell behavior, extracellular matrix components, and TGFB signaling.

  • Yitang Yan‎ et al.
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology‎
  • 2021‎

The heavy metal Cadmium (Cd), a widespread environmental contaminant, poses serious hazards to human health and is considered a metallohormone and carcinogen. In women with uterine fibroids, there is a significant association between blood Cd levels and increased fibroid tumor size. The aim of this study was to determine if benign human uterine leiomyoma (fibroid) cells could be malignantly transformed in vitro by continuous Cd exposure and, if so, explore a molecular mechanism by which this could occur. We found when fibroid cells were exposed to 10 µM CdCl2 for 8 weeks, a robust and fast-growing Cd-Resistant Leiomyoma (CR-LM) cell culture was established. The CR-LM cells formed viable colonies in soft agar and had increased cytoplasmic glycogen aggregates, enhanced cell motility, a higher percentage of cells in G2/M phase, and increased expression of the proliferation marker Ki-67. NanoString analysis showed downregulation of genes encoding for extracellular matrix (ECM) components, such as collagens, fibronectins, laminins, and SLRP family proteins, whereas genes involved in ECM degradation (MMP1, MMP3, and MMP10) were significantly upregulated. A volcano plot showed that the top differentially genes favored cancer progression. Functional analysis by ingenuity pathway analysis predicted a significant inhibition of TGFB1 signaling, leading to enhanced proliferation and attenuated fibrosis. Prolonged Cd exposure altered phenotypic characteristics and dysregulated genes in fibroid cells predicative of progression towards a cancer phenotype. Therefore, continuous Cd exposure alters the benign characteristics of fibroid cells in vitro, and Cd exposure could possibly pose a health hazard for women with uterine fibroids.


Inhibition of In Vitro Infection of Hepatitis B Virus by Human Breastmilk.

  • Yuqian Luo‎ et al.
  • Nutrients‎
  • 2022‎

Despite the presence of hepatitis B virus (HBV) in the human breastmilk of mothers infected with HBV, it has been shown that breastfeeding does not increase the risk of mother-to-child transmission (MTCT) of HBV. We tested the hypothesis that human breastmilk may contain active components that bind to HBV and inhibit the infectivity of HBV. The results show that human whey significantly inhibited the binding of the hepatitis B surface antigen (HBsAg) to its antibodies in competitive inhibition immunoassays. The far-western blotting showed that HBsAg bound to a protein of 80 kD in human whey, which was identified as lactoferrin by mass spectrometry. Competitive inhibition immunoassays further demonstrated that both human lactoferrin and bovine lactoferrin bound to HBsAg. Human whey, human lactoferrin, and bovine lactoferrin each significantly inhibited the infectivity of HBV in vitro. Our results indicate that human breastmilk can bind to HBsAg and inhibit the infectivity of HBV, and the active component is lactoferrin. The findings may explain the reason that breastfeeding has no additional risk for MTCT of HBV, although human breastmilk contains HBV. Our study provides experimental evidence that HBV-infected mothers should be encouraged to breastfeed their infants.


Transcriptome analysis reveals the neuroprotective effect of Dlg4 against fastigial nucleus stimulation-induced ischemia/reperfusion injury in rats.

  • Jinggui Gao‎ et al.
  • BMC neuroscience‎
  • 2023‎

Previous studies have demonstrated that electrical stimulation of the cerebellar fastigial nucleus (FNS) can considerably decrease infarction volume and improve neurofunction restoration following cerebral ischemia. Nevertheless, the molecular mechanism of the neuroprotective effect of FNS is still vague.


Kinetic Changes of Viremia and Viral Antigens of Hepatitis B Virus During and After Pregnancy.

  • Jingli Liu‎ et al.
  • Medicine‎
  • 2015‎

Whether pregnancy may influence the replication of hepatitis B virus (HBV) remains unknown. The authors aimed to clarify this issue by observing the kinetics of HBV deoxyribonucleic acid (DNA) and viral antigens in women during and after pregnancy. Total, 371 pregnant women with positive hepatitis B surface antigen (HBsAg) were enrolled. Serial sera collected during and after pregnancy were quantitatively measured for HBV DNA, HBsAg, and hepatitis B e antigen (HBeAg). Total, 34 HBeAg-positive women underwent alanine aminotransferase (ALT) elevation during or after pregnancy; levels of HBV DNA and HBsAg in them showed no obvious change between second trimester or delivery and 7 to 12 months postpartum (P > 0.05). The 337 others had normal alanine aminotransferase levels during pregnancy and postpartum. In 147 HBeAg-positive women with follow-up 7 to 12 months postpartum, the average levels of HBV DNA (>7.0 log10 IU/mL), HBsAg (>4.0 log10 IU/mL), and HBeAg (>3.0 log10 S/CO) were longitudinally constant during pregnancy and postpartum, respectively. In 173 women with follow-up 4.8 years postpartum, neither HBV DNA levels nor antigen titers showed significant difference between second trimester and 4.8 years postpartum, regardless of the HBeAg status. In addition, levels of HBV DNA and viral antigens in second trimester, around delivery, 6 to 8 weeks and 7 to 12 months postpartum showed no marked fluctuations, respectively. Serum levels of HBV DNA and viral antigens in HBsAg-positive women are highly constant during pregnancy and postpartum, regardless of the HBeAg status and alanine aminotransferase levels. This demonstrates that pregnancy has little influence on the HBV replication and antigen expression.


Perinatal bisphenol A exposure and adult glucose homeostasis: identifying critical windows of exposure.

  • Jingli Liu‎ et al.
  • PloS one‎
  • 2013‎

Bisphenol A (BPA) is a widespread endocrine-disrupting chemical used as the building block for polycarbonate plastics. Epidemiological evidence has correlated BPA exposure with higher risk of heart disease and type 2 diabetes. However, it remains unknown whether there are critical windows of susceptibility to BPA exposure on the development of dysglycemia. This study was an attempt to investigate the critical windows and the long-term consequences of perinatal exposure to BPA on glucose homeostasis. Pregnant mice were given either vehicle or BPA (100 µg/kg/day) at different time of perinatal stage: 1) on days 1-6 of pregnancy (P1-P6, preimplantation exposure); 2) from day 6 of pregnancy until postnatal day (PND) 0 (P6-PND0, fetal exposure); 3) from lactation until weaning (PND0-PND21, neonatal exposure); and 4) from day 6 of gestation until weaning (P6-PND21, fetal and neonatal exposure). At 3, 6 and 8 months of age, offspring in each group were challenged with glucose and insulin tolerance tests. Then islet morphometry and β-cell function were measured. The glucose homeostasis was impaired in P6-PND0 mice from 3 to 6 months of age, and this continued to 8 months in males, but not females. While in PND0-PND21 and P6-PND21 BPA-treated groups, only the 3-month-old male offspring developed glucose intolerance. Moreover, at the age of 3 months, perinatal exposure to BPA resulted in the increase of β-cell mass mainly due to the coordinate changes in cell replication, neogenesis, and apoptosis. The alterations of insulin secretion and insulin sensitivity, rather than β-cell mass, were consistent with the development of glucose intolerance. Our findings suggest that BPA may contribute to metabolic disorders relevant to glucose homeostasis and the effects of BPA were dose, sex, and time-dependent. Fetal development stage may be the critical window of susceptibility to BPA exposure.


Neuronal apoptosis in cerebral ischemia/reperfusion area following electrical stimulation of fastigial nucleus.

  • Jingli Liu‎ et al.
  • Neural regeneration research‎
  • 2014‎

Previous studies have indicated that electrical stimulation of the cerebellar fastigial nucleus in rats may reduce brain infarct size, increase the expression of Ku70 in cerebral ischemia/reperfusion area, and decrease the number of apoptotic neurons. However, the anti-apoptotic mechanism of Ku70 remains unclear. In this study, fastigial nucleus stimulation was given to rats 24, 48, and 72 hours before cerebral ischemia/reperfusion injury. Results from the electrical stimulation group revealed that rats exhibited a reduction in brain infarct size, a significant increase in the expression of Ku70 in cerebral ischemia/reperfusion regions, and a decreased number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells. Double immunofluorescence staining revealed no co-localization of Ku70 with TUNEL-positive cells. However, Ku70 partly co-localized with Bax protein in the cytoplasm of rats with cerebral ischemia/reperfusion injury. These findings suggest an involvement of Ku70 with Bax in the cytoplasm of rats exposed to electrical stimulation of the cerebellar fastigial nucleus, and may thus provide an understanding into the anti-apoptotic activity of Ku70 in cerebral ischemia/reperfusion injury.


Hsp47 Inhibitor Col003 Attenuates Collagen-Induced Platelet Activation and Cerebral Ischemic-Reperfusion Injury in Rats.

  • Shuang Wu‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

Ischemic stroke is a major type of stroke worldwide currently without effective treatment, although antiplatelet therapy is an existing option for it. In previous studies, heat shock protein 47 (Hsp47) was found to be expressed on the surface of human and mice platelets and to strengthen the interaction between platelets and collagen. In recent years, Col003 was discovered to inhibit the interaction of Hsp47 with collagen. We evaluated whether the Hsp47 inhibitor Col003 is a promising therapeutic agent for ischemic stroke. Here, we first verified that Hsp47 is also expressed on the surface of rat platelets, and its inhibitor Col003 significantly inhibited thrombus formation in the FeCl3-induced rat carotid arterial thrombus model. Both Col003 and clopidogrel did not alter the bleeding time or coagulation parameters, while aspirin increased the tail-bleeding time (p < 0.05). The low cytotoxicity level of Col003 to rat platelets and human liver cells was similar to those of aspirin and clopidogrel. Col003 inhibited collagen-induced platelet aggregation, adhesion, [Ca2+]i mobilization, P-selectin expression, reactive oxygen species production and the downstream signal pathway of collagen receptors. The results of the middle cerebral artery occlusion model indicated that Col003 has a protective effect against cerebral ischemic-reperfusion injury in rats. The Hsp47 inhibitor Col003 exerted antiplatelet effect and protective effect against brain damage induced by ischemic stroke through the inhibition of glycoprotein VI (GPVI)and mitogen-activated protein kinase (MAPK) signaling events, which might yield a new antiplatelet agent and strategy to treat ischemic stroke.


Eukaryotic community succession on discarded face masks in the marine environment.

  • Jie Ma‎ et al.
  • The Science of the total environment‎
  • 2022‎

Wearing facemasks remains an essential strategy for combating the COVID-19 pandemic. However, used masks are becoming plastic wastes that are widespread in the oceans, which is raising concerns about the potential impacts of these novel plastic niches on marine organisms. To delve into this issue, we exposed surgical masks to coastal waters for 30 days. Valuable information was recorded weekly in regard to the succession of the eukaryotic community inhabiting the masks via high-throughput 18S rRNA gene sequencing. Generally, the community on masks was significantly distinct from that in the surrounding seawater. With 1150 different eukaryotic taxa identified, the diversity of the vigorous colonizers of masks peaked at the beginning and decreased over time. A hallmark of initial colonization was the aggregation of diatoms, which formed biofilms on masks, followed by dinoflagellates that acted as a turning point for subsequent development of calcified species and other predators. This study provides insight into the eukaryotic community dynamics on discarded masks in the marine environment and highlights that the potential mask-mediated harmful species clustering may threaten the marine ecosystem.


Comparison of hepatitis B viral loads and viral antigen levels in child-bearing age women with and without pregnancy.

  • Chenyu Xu‎ et al.
  • BMC pregnancy and childbirth‎
  • 2018‎

Pregnancy is a unique physiological condition with the cellular immune functions compromised at some extents to allow the mature of growing fetus. Whether pregnancy may influence the replication of hepatitis B virus (HBV) is less studied. The present study aimed to investigate the influence of pregnancy on the replication of HBV and expression of viral antigens by comparing the levels of HBV DNA and viral antigens in pregnant and non-pregnant women.


MicroRNA-146a down-regulation correlates with neuroprotection and targets pro-apoptotic genes in cerebral ischemic injury in vitro.

  • Xia Zhou‎ et al.
  • Brain research‎
  • 2016‎

MicroRNAs (miRNAs) are short, non-coding RNAs that negatively regulate target gene expression, and play an important role in cerebral ischemic injury. MiR-146a has been reported to be highly related to cell invasion, metastasis, immunity, inflammation and apoptosis. Previous studies have indicated that miR-146a can either inhibit or promote apoptosis through different pathophysiological processes. In our previous study, miR-146a in the blood was down-regulated during acute ischemic stroke. However, the connection between miR-146a and acute cerebral ischemic injury and the mechanism underlying the connection remain unclear. Here, we aimed to investigate the role of miR-146a and its possible target genes in human SK-N-SH cells subjected to 16h of oxygen-glucose deprivation and 12h of reperfusion (OGD/R) injury. Cells were transfected with miR-146a mimic or inhibitor to alter the expression of miR-146a. MiR-146a in the SK-N-SH cells was down-regulated after OGD/R injury. Moreover, bioinformatics analysis and dual luciferase assays demonstrated that miR-146a directly recognized the 3'-UTR of the pro-apoptotic genes, Caspase7 and Bcl-2-associated transcription factor 1 (Bclaf1). Furthermore, miR-146a over-expression effectively decreased the mRNA and protein expression of Caspase7 and Bclaf1, and aggravated OGD/R-induced cell apoptosis; in contrast, miR-146a down-regulation was neuroprotective. In conclusion, our study revealed that miR-146a contributes to OGD/R injury in vitro, while negatively regulating the pro-apoptotic genes, Caspase7 and Bclaf1. This special mechanism provides new insight into miRNA regulatory networks. In addition, miR-146a may offer a potential therapeutic approach to cerebral ischemic injury.


The effect of exposure time and concentration of airborne PM2.5 on lung injury in mice: A transcriptome analysis.

  • Hongyun Wang‎ et al.
  • Redox biology‎
  • 2019‎

The association between airborne fine particulate matter (PM2.5) concentration and the risk of respiratory diseases has been well documented by epidemiological studies. However, the mechanism underlying the harmful effect of PM2.5 has not been fully understood. In this study, we exposed the C57BL/6J mice to airborne PM2.5 for 3 months (mean daily concentration ~50 or ~110 μg/m3, defined as PM2.5-3L or PM2.5-3H) or 6 months (mean daily concentration ~50 μg/m3, defined as PM2.5-6L) through a whole-body exposure system. Histological and biochemical analysis revealed that PM2.5-3H exposure caused more severe lung injury than did PM2.5-3L, and the difference was greater than that of PM2.5-6L vs PM2.5-3L exposure. With RNA-sequencing technique, we found that the lungs exposed with different concentration of PM2.5 have distinct transcriptional profiles. PM2.5-3H exposure caused more differentially expressed genes (DEGs) in lungs than did PM2.5-3L or PM2.5-6L. The DEGs induced by PM2.5-3L or PM2.5-6L exposure were mainly enriched in immune pathways, including Hematopoietic cell lineage and Cytokine-cytokine receptor interaction, while the DEGs induced by PM2.5-3H exposure were mainly enriched in cardiovascular disease pathways, including Hypertrophic cardiomyopathy and Dilated cardiomyopathy. In addition, we found that upregulation of Cd5l and reduction of Hspa1 and peroxiredoxin-4 was associated with PM2.5-induced pulmonary inflammation and oxidative stress. These results may provide new insight into the cytotoxicity mechanism of PM2.5 and help to development of new strategies to attenuate air pollution associated respiratory disease.


2-Methoxystypandrone inhibits signal transducer and activator of transcription 3 and nuclear factor-κB signaling by inhibiting Janus kinase 2 and IκB kinase.

  • Shan Kuang‎ et al.
  • Cancer science‎
  • 2014‎

Constitutive activation of the signal transducer and activator of transcription 3 (STAT3) or the nuclear factor-κB (NF-κB) pathway occurs frequently in cancer cells and contributes to oncogenesis. The activation of Janus kinase 2 (JAK2) and IκB kinase (IKK) are key events in STAT3 and NF-κB signaling, respectively. We have identified 2-methoxystypandrone (2-MS) from a traditional Chinese medicinal herb Polygonum cuspidatum as a novel dual inhibitor of JAK2 and IKK. 2-MS inhibits both interleukin-6-induced and constitutively-activated STAT3, as well as tumor necrosis factor-α-induced NF-κB activation. 2-MS specifically inhibits JAK and IKKβ kinase activities but has little effect on activities of other kinases tested. The inhibitory effects of 2-MS on STAT3 and NF-κB signaling can be eliminated by DTT or glutathione and can last for 4 h after a pulse treatment. Furthermore, 2-MS inhibits growth and induces death of tumor cells, particularly those with constitutively-activated STAT3 or NF-κB signaling. We propose that the natural compound 2-MS, as a potent dual inhibitor of STAT3 and NF-κB pathways, is a promising anticancer drug candidate.


Nutlin-3 downregulates p53 phosphorylation on serine392 and induces apoptosis in hepatocellular carcinoma cells.

  • Xinli Shi‎ et al.
  • BMB reports‎
  • 2014‎

Drug-resistance and imbalance of apoptotic regulation limit chemotherapy clinical application for the human hepatocellular carcinoma (HCC) treatment. The reactivation of p53 is an attractive therapeutic strategy in cancer with disrupted-p53 function. Nutlin-3, a MDM2 antagonist, has antitumor activity in various cancers. The post-translational modifications of p53 are a hot topic, but there are some controversy ideas about the function of phospho-Ser392-p53 protein in cancer cell lines in response to Nutlin-3. Therefore, we investigated the relationship between Nutlin-3 and phospho-Ser392-p53 protein expression levels in SMMC-7721 (wild-type TP53) and HuH-7 cells (mutant TP53). We demonstrated that Nutlin-3 induced apoptosis through down-regulation phospho-Ser392-p53 in two HCC cells. The result suggests that inhibition of p53 phosphorylation on Ser392 presents an alternative for HCC chemotherapy.


Expression Profile and Potential Functions of Circulating Long Noncoding RNAs in Acute Ischemic Stroke in the Southern Chinese Han Population.

  • Shenghua Li‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2019‎

Background: Long noncoding RNAs (lncRNAs) have been confirmed to be associated with ischemic stroke (IS); however, their involvement still needs to be extensively explored. Therefore, we aimed to study the expression profile of lncRNAs and the potential roles and mechanisms of lncRNAs in the pathogenesis of acute ischemic stroke (AIS) in the Southern Chinese Han population. Methods: In this study, lncRNA and mRNA expression profiles in AIS were analyzed using high-throughput RNA sequencing (RNA-Seq) and validated using quantitative real-time polymerase chain reaction (qRT-PCR). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and network analyses were performed to predict the functions and interactions of the aberrantly expressed genes. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic value of lncRNAs in AIS. Results: RNA-Seq analysis showed that 428 lncRNAs and 957 mRNAs were significantly upregulated, while 791 lncRNAs and 4,263 mRNAs were downregulated in patients with AIS when compared with healthy controls. GO enrichment and KEGG pathway analyses of differentially expressed genes showed that the apoptosis, inflammatory, oxidative and calcium signaling pathways were potentially implicated in AIS pathology. The PCR results showed that the selected lncRNA-C14orf64 and lncRNA-AC136007.2 were significantly downregulated in AIS. ROC curve analysis showed that the area under the ROC curve (AUC) values of lncRNA-C14orf64 and lncRNA-AC136007.2 between AIS and healthy controls were 0.74 and 0.94, respectively. Conclusion: This study provides evidence of altered expression of lncRNAs and their potential functions in AIS. Our findings may facilitate pathological mechanistic studies of lncRNAs in AIS and provide potential diagnostic biomarkers and therapeutic targets for AIS.


Weighted gene co expression network analysis (WGCNA) with key pathways and hub-genes related to micro RNAs in ischemic stroke.

  • Xiang Qu‎ et al.
  • IET systems biology‎
  • 2021‎

Ischemic stroke (IS) is one of the major causes of death and disability worldwide. However, the specific mechanism of gene interplay and the biological function in IS are not clear. Therefore, more research into IS is necessary. Dataset GSE110993 including 20 ischemic stroke (IS) and 20 control specimens are used to establish both groups and the raw RNA-seq data were analysed. Weighted gene co-expression network analysis (WGCNA) was used to screen the key micro-RNA modules. The centrality of key genes were determined by module membership (mm) and gene significance (GS). The key pathways were identified by enrichment analysis with Kyoto Protocol Gene and Genome Encyclopedia (KEGG), and the key genes were validated by protein-protein interactions network. Result: Upon investigation, 1185 up- and down-regulated genes were gathered and distributed into three modules in response to their degree of correlation to clinical traits of IS, among which the turquoise module show a trait-correlation of 0.77. The top 140 genes were further identified by GS and MM. KEGG analysis showed two pathways may evolve in the progress of IS. Discussion: CXCL12 and EIF2a may be important biomarkers for the accurate diagnosis and treatment in IS.


"Metalloestrogenic" effects of cadmium downstream of G protein-coupled estrogen receptor and mitogen-activated protein kinase pathways in human uterine fibroid cells.

  • Linda Yu‎ et al.
  • Archives of toxicology‎
  • 2021‎

Cadmium (Cd) is a toxic metal reported to act as an estrogen "mimic" in the rat uterus and in vitro. We have reported that Cd stimulates proliferation of estrogen-responsive human uterine leiomyoma (ht-UtLM; fibroid) cells through nongenomic signaling involving the G protein-coupled estrogen receptor (GPER), with activation of epidermal growth factor receptor (EGFR) and mitogen-activated protein kinase (pMAPK44/42). In this study, we explored Cd-induced mechanisms downstream of MAPK and whether Cd could stimulate phosphorylation of Histone H3 at serine 10 (H3Ser10ph) through activated Aurora B kinase (pAurora B), a kinase important in activation of histone H3 at serine 10 during mitosis, and if this occurs via Fork head box M1 (FOXM1) and cyclin D1 immediately downstream of MAPK. We found that Cd increased proliferating cell nuclear antigen (PCNA) and H3Ser10ph expression by immunofluorescence, and that H3ser10ph and pAurora B were coexpressed along the metaphase plate in ht-UtLM cells. In addition, Cd-exposed cells showed higher expression of pMAPK44/42, FOXM1, pAurora B, H3ser10ph, and Cyclin D1 by western blotting. Immunoprecipitation and proximity ligation assays further indicated an association between FOXM1 and Cyclin D1 in Cd-exposed cells. These effects were attenuated by MAPK kinase (MEK1/2) inhibitor. In summary, Cd-induced proliferation of ht-UtLM cells occurred through activation of Histone H3 and Aurora B via FOXM1/Cyclin D1 interactions downstream of MAPK. This provides a molecular mechanism of how Cd acts as an "estrogen mimic" resulting in mitosis in hormonally responsive cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: