Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 17 papers out of 17 papers

FASTKD1 and FASTKD4 have opposite effects on expression of specific mitochondrial RNAs, depending upon their endonuclease-like RAP domain.

  • Erik Boehm‎ et al.
  • Nucleic acids research‎
  • 2017‎

FASTK family proteins have been identified as regulators of mitochondrial RNA homeostasis linked to mitochondrial diseases, but much remains unknown about these proteins. We show that CRISPR-mediated disruption of FASTKD1 increases ND3 mRNA level, while disruption of FASTKD4 reduces the level of ND3 and of other mature mRNAs including ND5 and CYB, and causes accumulation of ND5-CYB precursor RNA. Disrupting both FASTKD1 and FASTKD4 in the same cell results in decreased ND3 mRNA similar to the effect of depleting FASTKD4 alone, indicating that FASTKD4 loss is epistatic. Interestingly, very low levels of FASTKD4 are sufficient to prevent ND3 loss and ND5-CYB precursor accumulation, suggesting that FASTKD4 may act catalytically. Furthermore, structural modeling predicts that each RAP domain of FASTK proteins contains a nuclease fold with a conserved aspartate residue at the putative active site. Accordingly, mutation of this residue in FASTKD4 abolishes its function. Experiments with FASTK chimeras indicate that the RAP domain is essential for the function of the FASTK proteins, while the region upstream determines RNA targeting and protein localization. In conclusion, this paper identifies new aspects of FASTK protein biology and suggests that the RAP domain function depends on an intrinsic nucleolytic activity.


Dynamics of PARKIN-Dependent Mitochondrial Ubiquitylation in Induced Neurons and Model Systems Revealed by Digital Snapshot Proteomics.

  • Alban Ordureau‎ et al.
  • Molecular cell‎
  • 2018‎

Flux through kinase and ubiquitin-driven signaling systems depends on the modification kinetics, stoichiometry, primary site specificity, and target abundance within the pathway, yet we rarely understand these parameters and their spatial organization within cells. Here we develop temporal digital snapshots of ubiquitin signaling on the mitochondrial outer membrane in embryonic stem cell-derived neurons, and we model HeLa cell systems upon activation of the PINK1 kinase and PARKIN ubiquitin ligase by proteomic counting of ubiquitylation and phosphorylation events. We define the kinetics and site specificity of PARKIN-dependent target ubiquitylation, and we demonstrate the power of this approach to quantify pathway modulators and to mechanistically define the role of PARKIN UBL phosphorylation in pathway activation in induced neurons. Finally, through modulation of pS65-Ub on mitochondria, we demonstrate that Ub hyper-phosphorylation is inhibitory to mitophagy receptor recruitment, indicating that pS65-Ub stoichiometry in vivo is optimized to coordinate PARKIN recruitment via pS65-Ub and mitophagy receptors via unphosphorylated chains.


Sugar phosphate activation of the stress sensor eIF2B.

  • Qi Hao‎ et al.
  • Nature communications‎
  • 2021‎

The multi-subunit translation initiation factor eIF2B is a control node for protein synthesis. eIF2B activity is canonically modulated through stress-responsive phosphorylation of its substrate eIF2. The eIF2B regulatory subcomplex is evolutionarily related to sugar-metabolizing enzymes, but the biological relevance of this relationship was unknown. To identify natural ligands that might regulate eIF2B, we conduct unbiased binding- and activity-based screens followed by structural studies. We find that sugar phosphates occupy the ancestral catalytic site in the eIF2Bα subunit, promote eIF2B holoenzyme formation and enhance enzymatic activity towards eIF2. A mutant in the eIF2Bα ligand pocket that causes Vanishing White Matter disease fails to engage and is not stimulated by sugar phosphates. These data underscore the importance of allosteric metabolite modulation for proper eIF2B function. We propose that eIF2B evolved to couple nutrient status via sugar phosphate sensing with the rate of protein synthesis, one of the most energetically costly cellular processes.


A human mitochondrial poly(A) polymerase mutation reveals the complexities of post-transcriptional mitochondrial gene expression.

  • William C Wilson‎ et al.
  • Human molecular genetics‎
  • 2014‎

The p.N478D missense mutation in human mitochondrial poly(A) polymerase (mtPAP) has previously been implicated in a form of spastic ataxia with optic atrophy. In this study, we have investigated fibroblast cell lines established from family members. The homozygous mutation resulted in the loss of polyadenylation of all mitochondrial transcripts assessed; however, oligoadenylation was retained. Interestingly, this had differential effects on transcript stability that were dependent on the particular species of transcript. These changes were accompanied by a severe loss of oxidative phosphorylation complexes I and IV, and perturbation of de novo mitochondrial protein synthesis. Decreases in transcript polyadenylation and in respiratory chain complexes were effectively rescued by overexpression of wild-type mtPAP. Both mutated and wild-type mtPAP localized to the mitochondrial RNA-processing granules thereby eliminating mislocalization as a cause of defective polyadenylation. In vitro polyadenylation assays revealed severely compromised activity by the mutated protein, which generated only short oligo(A) extensions on RNA substrates, irrespective of RNA secondary structure. The addition of LRPPRC/SLIRP, a mitochondrial RNA-binding complex, enhanced activity of the wild-type mtPAP resulting in increased overall tail length. The LRPPRC/SLIRP effect although present was less marked with mutated mtPAP, independent of RNA secondary structure. We conclude that (i) the polymerase activity of mtPAP can be modulated by the presence of LRPPRC/SLIRP, (ii) N478D mtPAP mutation decreases polymerase activity and (iii) the alteration in poly(A) length is sufficient to cause dysregulation of post-transcriptional expression and the pathogenic lack of respiratory chain complexes.


Intramolecular interactions control Vms1 translocation to damaged mitochondria.

  • Jin-Mi Heo‎ et al.
  • Molecular biology of the cell‎
  • 2013‎

Mitochondrial dysfunction is associated with the development of many age-related human diseases. Therefore recognizing and correcting the early signs of malfunctioning mitochondria is of critical importance for cellular welfare and survival. We previously demonstrated that VCP/Cdc48-associated mitochondrial stress responsive 1 (Vms1) is a component of a mitochondrial surveillance system that mediates the stress-responsive degradation of mitochondrial proteins by the proteasome. Here we propose novel mechanisms through which Vms1 monitors the status of mitochondria and is recruited to damaged or stressed mitochondria. We find that Vms1 contains a highly conserved region that is necessary and sufficient for mitochondrial targeting (the mitochondrial targeting domain [MTD]). Of interest, MTD-mediated mitochondrial targeting of Vms1 is negatively regulated by a direct interaction with the Vms1 N-terminus. Using laser-induced generation of mitochondrial reactive oxygen species, we also show that Vms1 is preferentially recruited to mitochondria subjected to oxidative stress. These studies define cellular and biochemical mechanisms by which Vms1 locali-zation to mitochondria is controlled to enable an efficient protein quality control system.


Biallelic C1QBP Mutations Cause Severe Neonatal-, Childhood-, or Later-Onset Cardiomyopathy Associated with Combined Respiratory-Chain Deficiencies.

  • René G Feichtinger‎ et al.
  • American journal of human genetics‎
  • 2017‎

Complement component 1 Q subcomponent-binding protein (C1QBP; also known as p32) is a multi-compartmental protein whose precise function remains unknown. It is an evolutionary conserved multifunctional protein localized primarily in the mitochondrial matrix and has roles in inflammation and infection processes, mitochondrial ribosome biogenesis, and regulation of apoptosis and nuclear transcription. It has an N-terminal mitochondrial targeting peptide that is proteolytically processed after import into the mitochondrial matrix, where it forms a homotrimeric complex organized in a doughnut-shaped structure. Although C1QBP has been reported to exert pleiotropic effects on many cellular processes, we report here four individuals from unrelated families where biallelic mutations in C1QBP cause a defect in mitochondrial energy metabolism. Infants presented with cardiomyopathy accompanied by multisystemic involvement (liver, kidney, and brain), and children and adults presented with myopathy and progressive external ophthalmoplegia. Multiple mitochondrial respiratory-chain defects, associated with the accumulation of multiple deletions of mitochondrial DNA in the later-onset myopathic cases, were identified in all affected individuals. Steady-state C1QBP levels were decreased in all individuals' samples, leading to combined respiratory-chain enzyme deficiency of complexes I, III, and IV. C1qbp-/- mouse embryonic fibroblasts (MEFs) resembled the human disease phenotype by showing multiple defects in oxidative phosphorylation (OXPHOS). Complementation with wild-type, but not mutagenized, C1qbp restored OXPHOS protein levels and mitochondrial enzyme activities in C1qbp-/- MEFs. C1QBP deficiency represents an important mitochondrial disorder associated with a clinical spectrum ranging from infantile lactic acidosis to childhood (cardio)myopathy and late-onset progressive external ophthalmoplegia.


Integrated proteogenetic analysis reveals the landscape of a mitochondrial-autophagosome synapse during PARK2-dependent mitophagy.

  • Jin-Mi Heo‎ et al.
  • Science advances‎
  • 2019‎

The PINK1 protein kinase activates the PARK2 ubiquitin ligase to promote mitochondrial ubiquitylation and recruitment of ubiquitin-binding mitophagy receptors typified by OPTN and TAX1BP1. Here, we combine proximity biotinylation of OPTN and TAX1BP1 with CRISPR-Cas9-based screens for mitophagic flux to develop a spatial proteogenetic map of PARK2-dependent mitophagy. Proximity labeling of OPTN allowed visualization of a "mitochondrial-autophagosome synapse" upon mitochondrial depolarization. Proximity proteomics of OPTN and TAX1BP1 revealed numerous proteins at the synapse, including both PARK2 substrates and autophagy components. Parallel mitophagic flux screens identified proteins with roles in autophagy, vesicle formation and fusion, as well as PARK2 targets, many of which were also identified via proximity proteomics. One protein identified in both approaches, HK2, promotes assembly of a high-molecular weight complex of PINK1 and phosphorylation of ubiquitin in response to mitochondrial damage. This work provides a resource for understanding the spatial and molecular landscape of PARK2-dependent mitophagy.


The Pseudouridine Synthase RPUSD4 Is an Essential Component of Mitochondrial RNA Granules.

  • Sofia Zaganelli‎ et al.
  • The Journal of biological chemistry‎
  • 2017‎

Mitochondrial gene expression is a fundamental process that is largely dependent on nuclear-encoded proteins. Several steps of mitochondrial RNA processing and maturation, including RNA post-transcriptional modification, appear to be spatially organized into distinct foci, which we have previously termed mitochondrial RNA granules (MRGs). Although an increasing number of proteins have been localized to MRGs, a comprehensive analysis of the proteome of these structures is still lacking. Here, we have applied a microscopy-based approach that has allowed us to identify novel components of the MRG proteome. Among these, we have focused our attention on RPUSD4, an uncharacterized mitochondrial putative pseudouridine synthase. We show that RPUSD4 depletion leads to a severe reduction of the steady-state level of the 16S mitochondrial (mt) rRNA with defects in the biogenesis of the mitoribosome large subunit and consequently in mitochondrial translation. We report that RPUSD4 binds 16S mt-rRNA, mt-tRNAMet, and mt-tRNAPhe, and we demonstrate that it is responsible for pseudouridylation of the latter. These data provide new insights into the relevance of RNA pseudouridylation in mitochondrial gene expression.


CLIC, a tool for expanding biological pathways based on co-expression across thousands of datasets.

  • Yang Li‎ et al.
  • PLoS computational biology‎
  • 2017‎

In recent years, there has been a huge rise in the number of publicly available transcriptional profiling datasets. These massive compendia comprise billions of measurements and provide a special opportunity to predict the function of unstudied genes based on co-expression to well-studied pathways. Such analyses can be very challenging, however, since biological pathways are modular and may exhibit co-expression only in specific contexts. To overcome these challenges we introduce CLIC, CLustering by Inferred Co-expression. CLIC accepts as input a pathway consisting of two or more genes. It then uses a Bayesian partition model to simultaneously partition the input gene set into coherent co-expressed modules (CEMs), while assigning the posterior probability for each dataset in support of each CEM. CLIC then expands each CEM by scanning the transcriptome for additional co-expressed genes, quantified by an integrated log-likelihood ratio (LLR) score weighted for each dataset. As a byproduct, CLIC automatically learns the conditions (datasets) within which a CEM is operative. We implemented CLIC using a compendium of 1774 mouse microarray datasets (28628 microarrays) or 1887 human microarray datasets (45158 microarrays). CLIC analysis reveals that of 910 canonical biological pathways, 30% consist of strongly co-expressed gene modules for which new members are predicted. For example, CLIC predicts a functional connection between protein C7orf55 (FMC1) and the mitochondrial ATP synthase complex that we have experimentally validated. CLIC is freely available at www.gene-clic.org. We anticipate that CLIC will be valuable both for revealing new components of biological pathways as well as the conditions in which they are active.


Mitochondrial Reprogramming Underlies Resistance to BCL-2 Inhibition in Lymphoid Malignancies.

  • Romain Guièze‎ et al.
  • Cancer cell‎
  • 2019‎

Mitochondrial apoptosis can be effectively targeted in lymphoid malignancies with the FDA-approved B cell lymphoma 2 (BCL-2) inhibitor venetoclax, but resistance to this agent is emerging. We show that venetoclax resistance in chronic lymphocytic leukemia is associated with complex clonal shifts. To identify determinants of resistance, we conducted parallel genome-scale screens of the BCL-2-driven OCI-Ly1 lymphoma cell line after venetoclax exposure along with integrated expression profiling and functional characterization of drug-resistant and engineered cell lines. We identified regulators of lymphoid transcription and cellular energy metabolism as drivers of venetoclax resistance in addition to the known involvement by BCL-2 family members, which were confirmed in patient samples. Our data support the implementation of combinatorial therapy with metabolic modulators to address venetoclax resistance.


The mitochondrial succinate dehydrogenase complex controls the STAT3-IL-10 pathway in inflammatory macrophages.

  • Dino Gobelli‎ et al.
  • iScience‎
  • 2023‎

The functions of macrophages are tightly regulated by their metabolic state. However, the role of the mitochondrial electron transport chain (ETC) in macrophage functions remains understudied. Here, we provide evidence that the succinate dehydrogenase (SDH)/complex II (CII) is required for respiration and plays a role in controlling effector responses in macrophages. We find that the absence of the catalytic subunits Sdha and Sdhb in macrophages impairs their ability to effectively stabilize HIF-1α and produce the pro-inflammatory cytokine IL-1β in response to LPS stimulation. We also arrive at the novel result that both subunits are essential for the LPS-driven production of IL-10, a potent negative feedback regulator of the macrophage inflammatory response. This phenomenon is explained by the fact that the absence of Sdha and Sdhb leads to the inhibition of Stat3 tyrosine phosphorylation, caused partially by the excessive accumulation of mitochondrial reactive oxygen species (mitoROS) in the knockout cells.


GRSF1 regulates RNA processing in mitochondrial RNA granules.

  • Alexis A Jourdain‎ et al.
  • Cell metabolism‎
  • 2013‎

Various specialized domains have been described in the cytosol and the nucleus; however, little is known about compartmentalization within the mitochondrial matrix. GRSF1 (G-rich sequence factor 1) is an RNA binding protein that was previously reported to localize in the cytosol. We found that an isoform of GRSF1 accumulates in discrete foci in the mitochondrial matrix. These foci are composed of nascent mitochondrial RNA and also contain RNase P, an enzyme that participates in mitochondrial RNA processing. GRSF1 was found to interact with RNase P and to be required for processing of both classical and tRNA-less RNA precursors. In its absence, cleavage of primary RNA transcripts is abnormal, leading to decreased expression of mitochondrially encoded proteins and mitochondrial dysfunction. Our findings suggest that the foci containing GRSF1 and RNase P correspond to sites where primary RNA transcripts converge to be processed. We have termed these large ribonucleoprotein structures "mitochondrial RNA granules."


A Genome-wide CRISPR Death Screen Identifies Genes Essential for Oxidative Phosphorylation.

  • Jason D Arroyo‎ et al.
  • Cell metabolism‎
  • 2016‎

Oxidative phosphorylation (OXPHOS) is the major pathway for ATP production in humans. Deficiencies in OXPHOS can arise from mutations in either mitochondrial or nuclear genomes and comprise the largest collection of inborn errors of metabolism. At present we lack a complete catalog of human genes and pathways essential for OXPHOS. Here we introduce a genome-wide CRISPR "death screen" that actively selects dying cells to reveal human genes required for OXPHOS, inspired by the classic observation that human cells deficient in OXPHOS survive in glucose but die in galactose. We report 191 high-confidence hits essential for OXPHOS, including 72 underlying known OXPHOS diseases. Our screen reveals a functional module consisting of NGRN, WBSCR16, RPUSD3, RPUSD4, TRUB2, and FASTKD2 that regulates the mitochondrial 16S rRNA and intra-mitochondrial translation. Our work yields a rich catalog of genes required for OXPHOS and, more generally, demonstrates the power of death screening for functional genomic analysis.


Loss of LUC7L2 and U1 snRNP subunits shifts energy metabolism from glycolysis to OXPHOS.

  • Alexis A Jourdain‎ et al.
  • Molecular cell‎
  • 2021‎

Oxidative phosphorylation (OXPHOS) and glycolysis are the two major pathways for ATP production. The reliance on each varies across tissues and cell states, and can influence susceptibility to disease. At present, the full set of molecular mechanisms governing the relative expression and balance of these two pathways is unknown. Here, we focus on genes whose loss leads to an increase in OXPHOS activity. Unexpectedly, this class of genes is enriched for components of the pre-mRNA splicing machinery, in particular for subunits of the U1 snRNP. Among them, we show that LUC7L2 represses OXPHOS and promotes glycolysis by multiple mechanisms, including (1) splicing of the glycolytic enzyme PFKM to suppress glycogen synthesis, (2) splicing of the cystine/glutamate antiporter SLC7A11 (xCT) to suppress glutamate oxidation, and (3) secondary repression of mitochondrial respiratory supercomplex formation. Our results connect LUC7L2 expression and, more generally, the U1 snRNP to cellular energy metabolism.


Distinct mitochondrial defects trigger the integrated stress response depending on the metabolic state of the cell.

  • Eran Mick‎ et al.
  • eLife‎
  • 2020‎

Mitochondrial dysfunction is associated with activation of the integrated stress response (ISR) but the underlying triggers remain unclear. We systematically combined acute mitochondrial inhibitors with genetic tools for compartment-specific NADH oxidation to trace mechanisms linking different forms of mitochondrial dysfunction to the ISR in proliferating mouse myoblasts and in differentiated myotubes. In myoblasts, we find that impaired NADH oxidation upon electron transport chain (ETC) inhibition depletes asparagine, activating the ISR via the eIF2α kinase GCN2. In myotubes, however, impaired NADH oxidation following ETC inhibition neither depletes asparagine nor activates the ISR, reflecting an altered metabolic state. ATP synthase inhibition in myotubes triggers the ISR via a distinct mechanism related to mitochondrial inner-membrane hyperpolarization. Our work dispels the notion of a universal path linking mitochondrial dysfunction to the ISR, instead revealing multiple paths that depend both on the nature of the mitochondrial defect and on the metabolic state of the cell.


Salvage of ribose from uridine or RNA supports glycolysis in nutrient-limited conditions.

  • Owen S Skinner‎ et al.
  • Nature metabolism‎
  • 2023‎

Glucose is vital for life, serving as both a source of energy and carbon building block for growth. When glucose is limiting, alternative nutrients must be harnessed. To identify mechanisms by which cells can tolerate complete loss of glucose, we performed nutrient-sensitized genome-wide genetic screens and a PRISM growth assay across 482 cancer cell lines. We report that catabolism of uridine from the medium enables the growth of cells in the complete absence of glucose. While previous studies have shown that uridine can be salvaged to support pyrimidine synthesis in the setting of mitochondrial oxidative phosphorylation deficiency1, our work demonstrates that the ribose moiety of uridine or RNA can be salvaged to fulfil energy requirements via a pathway based on: (1) the phosphorylytic cleavage of uridine by uridine phosphorylase UPP1/UPP2 into uracil and ribose-1-phosphate (R1P), (2) the conversion of uridine-derived R1P into fructose-6-P and glyceraldehyde-3-P by the non-oxidative branch of the pentose phosphate pathway and (3) their glycolytic utilization to fuel ATP production, biosynthesis and gluconeogenesis. Capacity for glycolysis from uridine-derived ribose appears widespread, and we confirm its activity in cancer lineages, primary macrophages and mice in vivo. An interesting property of this pathway is that R1P enters downstream of the initial, highly regulated steps of glucose transport and upper glycolysis. We anticipate that 'uridine bypass' of upper glycolysis could be important in the context of disease and even exploited for therapeutic purposes.


Hypoxia and intra-complex genetic suppressors rescue complex I mutants by a shared mechanism.

  • Joshua D Meisel‎ et al.
  • Cell‎
  • 2024‎

The electron transport chain (ETC) of mitochondria, bacteria, and archaea couples electron flow to proton pumping and is adapted to diverse oxygen environments. Remarkably, in mice, neurological disease due to ETC complex I dysfunction is rescued by hypoxia through unknown mechanisms. Here, we show that hypoxia rescue and hyperoxia sensitivity of complex I deficiency are evolutionarily conserved to C. elegans and are specific to mutants that compromise the electron-conducting matrix arm. We show that hypoxia rescue does not involve the hypoxia-inducible factor pathway or attenuation of reactive oxygen species. To discover the mechanism, we use C. elegans genetic screens to identify suppressor mutations in the complex I accessory subunit NDUFA6/nuo-3 that phenocopy hypoxia rescue. We show that NDUFA6/nuo-3(G60D) or hypoxia directly restores complex I forward activity, with downstream rescue of ETC flux and, in some cases, complex I levels. Additional screens identify residues within the ubiquinone binding pocket as being required for the rescue by NDUFA6/nuo-3(G60D) or hypoxia. This reveals oxygen-sensitive coupling between an accessory subunit and the quinone binding pocket of complex I that can restore forward activity in the same manner as hypoxia.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: