Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 114 papers

Predictive role of corneal Q-value differences between nasal-temporal and superior-inferior quadrants in orthokeratology lens decentration.

  • Juan Li‎ et al.
  • Medicine‎
  • 2017‎

To investigate the association between pretreatment corneal parameters and orthokeratology lens decentration.


Potential Autoepitope within the Extracellular Region of Contactin-Associated Protein-like 2 in Mice.

  • Demian F Obregon‎ et al.
  • British journal of medicine and medical research‎
  • 2014‎

Implicated in autoimmune encephalitis, neuromyotonia and genetic forms of autism, here we report that contactin-associated protein-like 2 (CNTNAP2) contains a potential autoepitope within the extracellular region.


Insulin-like growth factor binding protein-3 mediates interleukin-24-induced apoptosis through inhibition of the mTOR pathway in prostate cancer.

  • Yuefeng Du‎ et al.
  • Oncology reports‎
  • 2015‎

IGF-binding protein-3 (IGFBP-3) has been shown to induce apoptosis in an insulin-like growth factor (IGF)‑independent manner in various cell systems, however, the underlying molecular mechanisms remain unknown. In the present study, we showed that IGFBP-3 significantly enhanced interleukin-24 (IL-24)-induced cell death in prostate cancer (PC) cell lines in vitro. Both the addition of IGFBP-3 to cell medium or the enforced expression of IGFBP-3 in the PC cell line inhibited activation of mammalian target of rapamycin (mTOR). Downregulation of mTOR/S6K reduced Mcl-1 protein expression and consequently promoted sensitization to IL-24 treatment. Overexpression of Mcl-1 reduced the level of cleaved poly(ADP-ribose) polymerase (PARP) induced by IL-24 and IGFBP-3, suggesting that the IL-24-induced apoptosis is realized by way of Mcl-1. We then showed that the combination of IL-24 and IGFBP-3 significantly suppressed PC tumor growth in vivo. We propose that the IGFBP-3 and IL-24 non-toxic mTOR inhibitors can be used as an adjuvant in the treatment of PC.


PrLZ increases prostate cancer docetaxel resistance by inhibiting LKB1/AMPK-mediated autophagy.

  • Jin Zeng‎ et al.
  • Theranostics‎
  • 2018‎

Rationale: Docetaxel-mediated chemotherapy is the first-line standard approach and has been determined to show a survival advantage for metastatic castration-resistant prostate cancer (mCRPC) patients. However, a substantial proportion of patients eventually becomes refractory due to drug resistance. The detailed mechanisms remain unclear. We have previously reported that Prostate Leucine Zipper (PrLZ), a specific oncogene of prostate cancer (PCa), promotes PCa cell growth at the castration-resistant stage, thus suggesting a vital role of PrLZ in the progression of CRPC. In this study, we aimed to investigate the role of PrLZ in docetaxel resistance in PCa, focusing on PrLZ-regulating autophagy pathway. Methods: Human PCa PC3, LNCaP and C4-2 cell lines were used as the model system in vitro and PCa xenografts and PrLZ-knockout mice were used as the model system in vivo. Docetaxel-induced cell death and apoptosis in PCa were determined by MTT and flow cytometry assay. The role of PrLZ on the regulation of autophagy and liver kinase B1/AMP-activated protein kinase (LKB1/AMPK) signaling pathway was analyzed using immunoblotting, immunoprecipitation, siRNA silencing and plasmid overexpression. Results: PrLZ increased docetaxel-mediated drug resistance both in vitro and in vivo. Mechanistic dissection revealed that PrLZ interacted with LKB1 and further inhibited the activation of LKB1/AMPK signals, which negatively contributed to the induction of autophagy. Moreover, PrLZ/LKB1-mediated autophagy conferred resistance to docetaxel-induced cell death and apoptosis both in vitro and in vivo. Conclusion: These findings identify a novel role of PrLZ in autophagy manipulation and provide new insight into docetaxel chemoresistance in PCa, suggesting a new strategy for treating mCRPC by targeting this newly identified signaling pathway.


Human Umbilical Cord Blood Serum-derived α-Secretase: Functional Testing in Alzheimer's Disease Mouse Models.

  • Ahsan Habib‎ et al.
  • Cell transplantation‎
  • 2018‎

Alzheimer's disease (AD) is an age-related disorder that affects cognition. Our previous studies showed that the neuroprotective fragment of amyloid procurer protein (APP) metabolite, soluble APPα (sAPPα), interferes with β-site APP-cleaving enzyme 1 (BACE1, β-secretase) cleavage and reduces amyloid-β (Aβ) generation. In an attempt to identify approaches to restore sAPPα levels, we found that human cord blood serum (CBS) significantly promotes sAPPα production compared with adult blood serum (ABS) and aged blood serum (AgBS) in Chinese hamster ovary cells stably expressing wild-type human APP. Interestingly, CBS selectively mediated the α-secretase cleavage of human neuron-specific recombinant APP695 in a cell-free system independent of tumor necrosis factor-α converting enzyme (TACE; a disintegrin and metalloproteinase domain-containing protein 17 [ADAM17]) and ADAM. Subsequently, using 3-step chromatographic separation techniques (i.e., diethylaminoethanol, size-exclusion, and ion-exchange chromatography), we purified and ultimately identified a CBS-specific fraction with enhanced α-secretase catalytic activity (termed αCBSF) and found that αCBSF has more than 3,000-fold increased α-secretase catalytic activity compared with the original pooled CBS. Furthermore, intracerebroventricular injection of αCBSF markedly increased cerebral sAPPα levels together with significant decreases in cerebral Aβ production and abnormal tau (Thr231) phosphorylation compared with the AgBS fraction with enhanced α-secretase activity (AgBSF) treatment in triple transgenic Alzheimer's disease (3xTg-AD) mice. Moreover, AgBSF administered intraperitoneally to transgenic mice with five familial Alzheimer's disease mutations (5XFAD) via an osmotic mini pump for 6 weeks (wk) ameliorated β-amyloid plaques and reversed cognitive impairment measures. Together, our results propose the necessity for further study aimed at identification and characterization of α-secretase in CBS for novel and effective AD therapy.


Alpha Thalassemia/Intellectual Disability X-Linked Deficiency Sensitizes Non-Small Cell Lung Cancer to Immune Checkpoint Inhibitors.

  • Tao Hou‎ et al.
  • Frontiers in oncology‎
  • 2020‎

The immune checkpoint inhibitors (ICIs) have achieved great success in the treatment of non-small cell lung cancer (NSCLC) patients. However, the response rate is low. The molecular mechanism involved in the effectiveness of ICIs remains to be elucidated.


CD82 Suppresses ADAM17-Dependent E-Cadherin Cleavage and Cell Migration in Prostate Cancer.

  • Zhenkun Ma‎ et al.
  • Disease markers‎
  • 2020‎

CD82 acts as a tumor suppressor in a series of steps in malignant progression. Here, we identified a novel function of CD82 on posttranslational regulating E-cadherin in prostate cancer. In our study, the declined expression of CD82 was verified in prostate cancer tissues and cell lines compared with normal tissue and cell lines. Functionally, CD82 inhibited cell migration and E-cadherin cleavage from the cell membrane in prostate cancer cell. Further study proved that a disintegrin and metalloproteinase ADAM17 as an executor of E-cadherin cleavage mediated the inhibitory regulation of CD82 in E-cadherin shedding in prostate cancer. Specifically, CD82 interacted with ADAM17 and inhibited its metalloprotease activity, which led to the descent of E-cadherin shedding. These results show a nuanced but important role of CD82 in nontranscriptional regulation of E-cadherin, which may help to understand the intricate regulation of dysfunctional adhesion molecule in cancer progression.


Dehydroeffusol inhibits hypoxia-induced epithelial-mesenchymal transition in non-small cell lung cancer cells through the inactivation of Wnt/β-catenin pathway.

  • Haitao Wei‎ et al.
  • Bioscience reports‎
  • 2020‎

Dehydroeffusol (DHE) is a phenanthrene compound that possesses anti-tumor activity. However, the effect of DHE on non-small cell lung cancer (NSCLC) has not been investigated previously. Therefore, the objective of our study was to explore the role of DHE in NSCLC and the underlying mechanism. Our results showed that DHE significantly inhibited the cell viability of A549 cells in a dose- and time-dependent manner under normoxic condition. Moreover, A549 cells were more sensitive to DHE under hypoxic condition compared with the A549 cells cultured in normoxic condition. Hypoxia-induced increased migration and invasion abilities were mitigated by DHE in A549 cells. Treatment of DHE caused increased E-cadherin expression and decreased N-cadherin expression in hypoxia-induced A549 cells. DHE also suppressed hypoxia-induced increase in both protein and mRNA levels of hypoxia inducible factor-1α (HIF-1α) expression in A549 cells. Furthermore, DHE inhibited hypoxia-induced activation of Wnt/β-catenin pathway in A549 cells. The inhibitory effect of DHE on hypoxia-induced EMT was reversed by LiCl, which is an activator of Wnt/β-catenin signaling pathway. In conclusion, these findings demonstrated that DHE prevented hypoxia-induced EMT in NSCLC cells by inhibiting the activation of Wnt/β-catenin pathway, suggesting that DHE might serve as a therapeutic target for the NSCLC metastasis.


Nicotinamide N-methyltransferase enhances chemoresistance in breast cancer through SIRT1 protein stabilization.

  • Yanzhong Wang‎ et al.
  • Breast cancer research : BCR‎
  • 2019‎

Nicotinamide N-methyltransferase (NNMT) is overexpressed in various human tumors and involved in the development and progression of several carcinomas. In breast cancer, NNMT was found to be overexpressed in several cell lines. However, the clinical relevance of NNMT in breast cancer is not yet clear.


HnRNP A1 - mediated alternative splicing of CCDC50 contributes to cancer progression of clear cell renal cell carcinoma via ZNF395.

  • Guoliang Sun‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2020‎

Aberrant alternative splicing events play critical roles in carcinogenesis and progression of many cancers, while sparse studies regarding to alternative splicing are available for clear cell renal cell carcinoma (ccRCC). We identified that alternative splicing of coiled-coil domain containing 50 (CCDC50) was dysregulated in ccRCC, whereas the clinical significance of this splicing event and its splicing regulation mechanisms were still elusive.


Nicotinamide N-methyltransferase inhibits autophagy induced by oxidative stress through suppressing the AMPK pathway in breast cancer cells.

  • Haitao Yu‎ et al.
  • Cancer cell international‎
  • 2020‎

Nicotinamide N-methyltransferase (NNMT) is highly expressed in several cancers and can regulate cell epigenetic status and various cell metabolism pathways, such as ATP synthesis and cellular stress response. We reported in our previous papers that NNMT overexpression inhibits the apoptosis and enhances the chemotherapy resistance of breast cancer cells. This study aims to investigate the effect of NNMT on autophagy induced by oxidative stress in breast cancer cells, which might provide a novel therapeutic strategy for breast cancer treatment.


Identification and target-pathway deconvolution of FFA4 agonists with anti-diabetic activity from Arnebia euchroma (Royle) Johnst.

  • Fangfang Xu‎ et al.
  • Pharmacological research‎
  • 2021‎

FFA4 is a novel therapeutic target for the treatment of metabolic diseases, such as type II diabetes. However, there are still few ligands with structural diversity, selectivity and high potency, and the signaling pathway downstream of FFA4 remains to be poorly characterized. In this study, a high performance liquid chromatography-corona charged aerosol detector (HPLC-CAD) combined with label-free dynamic mass redistribution (DMR) method was introduced to guide the discovery of FFA4 agonists from Arnebia euchroma (Royle) Johnst. Ten compounds were identified as FFA4 agonists and structure-activity relationship was obtained. Among them, shikonin displayed the most potent activity with pEC50 value of 6.02 ± 0.19. The activity of shikonin was confirmed by FLIPR (fluorometric imaging plate reader) assay. Signaling pathways of FFA4 were explored in HT-29 cells endogenously expressing FFA4 using shikonin and known FFA4 agonists α-linolenic acid (ALA) and TUG891. Multiple pathways included Gq/11-PLC-Ca2+-PKC, RohA, JNK, p38 MAPK, Gi/o and PI3K signaling but may not involve Gs signaling triggered by shikonin, ALA and TUG891. Besides, shikonin, TUG891 and ALA could induce ERK1/2 and AKT phosphorylation in HT-29 cells. Moreover, anti-diabetes effects of shikonin were evaluated on the glucose intolerance in diabetic db/db mice. Shikonin reduced plasma glucose level, suggesting that it had the potential in treatment of type II diabetes. The agonists identified in this study provided structure guidance for FFA4 drug design. This study was also useful for understanding FFA4 pharmacology and its biological function.


Binocular integration and stereopsis in children with television torticollis.

  • Cheng Yang‎ et al.
  • BMC ophthalmology‎
  • 2021‎

To observe the characteristics of binocular integration and stereopsis in children with television torticollis.


Vanillin downregulates NNMT and attenuates NNMT‑related resistance to 5‑fluorouracil via ROS‑induced cell apoptosis in colorectal cancer cells.

  • Guoli Li‎ et al.
  • Oncology reports‎
  • 2021‎

Chemoresistance is the main cause of poor prognosis in colorectal cancer (CRC). Nicotinamide N‑methyltransferase (NNMT) is a metabolic enzyme that is upregulated in various tumor types. It has been reported that NNMT inhibits apoptosis and enhances resistance to 5‑fluorouracil (5‑Fu) via inhibition of the apoptosis signal regulating kinase 1 (ASK1)‑p38 MAPK pathway in CRC cells. A natural product library was screened, and it was found that vanillin, also known as 4‑hydroxy‑3‑methoxybenzaldehyde, a plant secondary metabolite found in several essential plant oils, mainly Vanilla planifolia, Vanilla tahitensis, and Vanilla pompon, may be a promising anticancer compound targeted to NNMT. The aim of the present study was to explore the effect of vanillin on promoting apoptosis and attenuating NNMT‑induced resistance to 5‑Fu in CRC. Lentiviral vectors of short hairpin RNA and small interfering RNA were transfected into HT‑29 cells to construct NNMT‑knockdown HT‑29 cell lines. Vectors containing an open reading frame of NNMT were stably transfected into SW480 cells to induce NNMT overexpression in SW480 cell lines. Vanillin was found to inhibit the mRNA and protein expression levels of NNMT following the inhibition of NNMT activity in HT‑29 cell lines. Vanillin was able to reverse NNMT‑induced increased cell proliferation, decreased cell apoptosis and resistance to 5‑Fu by inhibiting NNMT expression. Furthermore, it increased cell apoptosis by activating the ASK1‑p38 MAPK pathway, which could be inhibited by NNMT. In addition, vanillin increased cell apoptosis by promoting mitochondrial damage and reactive oxygen species. In vivo, the combination of vanillin with 5‑Fu yielded a notable synergy in inhibiting tumor growth and inducing apoptosis. Considering that vanillin is an important flavor and aromatic component used in foods worldwide, vanillin is deemed to be a promising anticancer candidate by inhibiting NNMT and may attenuate NNMT‑induced resistance to 5‑Fu in human CRC therapy with few side effects.


CD46 splice variant enhances translation of specific mRNAs linked to an aggressive tumor cell phenotype in bladder cancer.

  • Jin Zeng‎ et al.
  • Molecular therapy. Nucleic acids‎
  • 2021‎

CD46 is well known to be involved in diverse biological processes. Although several splice variants of CD46 have been identified, little is known about the contribution of alternative splicing to its tumorigenic functions. In this study, we found that exclusion of CD46 exon 13 is significantly increased in bladder cancer (BCa) samples. In BCa cell lines, enforced expression of CD46-CYT2 (exon 13-skipping isoform) promoted, and CD46-CYT1 (exon 13-containing isoform) attenuated, cell growth, migration, and tumorigenicity in a xenograft model. We also applied interaction proteomics to identify exhaustively the complexes containing the CYT1 or CYT2 domain in EJ-1 cells. 320 proteins were identified that interact with the CYT1 and/or CYT2 domain, and most of them are new interactors. Using an internal ribosome entry site (IRES)-dependent reporter system, we established that CD46 could regulate mRNA translation through an interaction with the translation machinery. We also identified heterogeneous nuclear ribonucleoprotein (hnRNP)A1 as a novel CYT2 binding partner, and this interaction facilitates the interaction of hnRNPA1 with IRES RNA to promote IRES-dependent translation of HIF1a and c-Myc. Strikingly, the splicing factor SRSF1 is highly correlated with CD46 exon 13 exclusion in clinical BCa samples. Taken together, our findings contribute to understanding the role of CD46 in BCa development.


ERK1/2 inhibits Cullin 3/SPOP-mediated PrLZ ubiquitination and degradation to modulate prostate cancer progression.

  • Yizeng Fan‎ et al.
  • Cell death and differentiation‎
  • 2022‎

The gene encoding the E3 ubiquitin ligase substrate-binding adaptor SPOP is frequently mutated in prostate cancer (PCa), but how SPOP functions as a tumor suppressor and contributes to PCa pathogenesis remains poorly understood. Prostate Leucine Zipper (PrLZ) serves as a prostate-specific and androgen-responsive gene, which plays a pivotal role in the malignant progression of PCa. However, the upstream regulatory mechanism of PrLZ protein stability and its physiological contribution to PCa carcinogenesis remain largely elusive. Here we report that PrLZ can be degraded by SPOP. PrLZ abundance is elevated in SPOP-mutant expressing PCa cell lines and patient specimens. Meanwhile, ERK1/2 might regulate SPOP-mediated PrLZ degradation through phosphorylating PrLZ at Ser40, which blocks the interaction between SPOP and PrLZ. In addition, we identify IL-6 might act as an upstream PrLZ degradation regulator via promoting its phosphorylation by ERK1/2, leading to its impaired recognition by SPOP. Thus, our study reveals a novel SPOP substrate PrLZ which might be controlled by ERK1/2-mediated phosphorylation, thereby facilitating to explore novel drug targets and improve therapeutic strategy for PCa.


Comprehensive characterization of the bacterial community structure and metabolite composition of food waste fermentation products via microbiome and metabolome analyses.

  • Hongmei Li‎ et al.
  • PloS one‎
  • 2022‎

Few studies have characterized the microbial community and metabolite profile of solid food waste fermented products from centralized treatment facilities, which could potentially be processed into safe animal feeds. In this study, 16S rRNA gene sequencing and liquid/gas chromatography-mass spectrometry were conducted to investigate the bacterial community structure and metabolite profile of food waste samples inoculated with or without 0.18% of a commercial bacterial agent consisting of multiple unknown strains and 2% of a laboratory-made bacterial agent consisting of Enterococcus faecalis, Bacillus subtilis and Candida utilis. Our findings indicated that microbial inoculation increased the crude protein content of food waste while reducing the pH value, increasing lactic acid production, and enhancing aerobic stability. Microbial inoculation affected the community richness, community diversity, and the microbiota structure (the genera with abundances above 1.5% in the fermentation products included Lactobacillus (82.28%) and Leuconostoc (1.88%) in the uninoculated group, Lactobacillus (91.85%) and Acetobacter (2.01%) in the group inoculated with commercial bacterial agents, and Lactobacillus (37.11%) and Enterococcus (53.81%) in the group inoculated with homemade laboratory agents). Microbial inoculation reduced the abundance of potentially pathogenic bacteria. In the metabolome, a total of 929 substances were detected, 853 by LC-MS and 76 by GC-MS. Our results indicated that inoculation increased the abundance of many beneficial metabolites and aroma-conferring substances but also increased the abundance of undesirable odors and some harmful compounds such as phenol. Correlation analyses suggested that Leuconostoc, Lactococcus, and Weissella would be promising candidates to improve the quality of fermentation products. Taken together, these results indicated that inoculation could improve food waste quality to some extent; however, additional studies are required to optimize the selection of inoculation agents.


Extraction, Structural Characterization, and Immunomodulatory Activity of a High Molecular Weight Polysaccharide From Ganoderma lucidum.

  • Guo Liu‎ et al.
  • Frontiers in nutrition‎
  • 2022‎

Ganoderma lucidum polysaccharides (GLP) exhibited excellent immunomodulatory activity. Unfortunately, the structure and immunomodulatory activity of GLP are still unclear. GLP was separated into two fractions [high Mw Restriction Fragment Length Polymorphism (RGLP) and low Mw EGLP] using 10 kDa cut-off ultrafiltration membrane. Although the RGLP content was low in GLP, the immunomodulatory activity in RGLP was significantly higher than that of EGLP. Moreover, RGLP was further separated via the Sephacryl column to obtain RGLP-1 showed the best immunomodulatory activity in the macrophage RAW264.7 model. Structural analysis revealed that RGLP-1 was 3,978 kDa and mainly consisted of glucose. Periodate oxidation, Smith degradation, and methylation results indicated that RGLP-1 is a β-pyran polysaccharide mainly with 1→3, 1→4, 1→6, and 1→3, 6 glycosyl bonds at a molar ratio of 40.08: 8.11: 5.62: 17.81. Scanning electron microscopy, atomic force microscopy, and Congo red experiments revealed that RGLP-1 intertwined with each other to form circular aggregates and might possess a globular structure with triple-helix conformation in water. Overall, these results provide RGLP-1 as a potential functional food ingredient or pharmaceutical for immunomodulatory.


RNA adenosine modifications related to prognosis and immune infiltration in osteosarcoma.

  • Shijie Chen‎ et al.
  • Journal of translational medicine‎
  • 2022‎

RNA adenosine modifications, which are primarily mediated by "writer" enzymes (RMWs), play a key role in epigenetic regulation in various biological processes, including tumorigenesis. However, the expression and prognostic role of these genes in osteosarcoma (OS) remain unclear.


Nedaplatin-based chemotherapy or cisplatin-based chemotherapy combined with intensity-modulated radiotherapy achieve similar efficacy for stage II-IVa nasopharyngeal carcinoma patients.

  • Chao Deng‎ et al.
  • Scientific reports‎
  • 2022‎

This retrospective study compared the efficacy and safety of nedaplatin-based chemoradiotherapy and cisplatin-based chemoradiotherapy in stage II-IVa nasopharyngeal carcinoma (NPC) patients. Patients treated with cisplatin-based or nedaplatin-based chemoradiotherapy between January 2012 and December 2015 were evaluated. Survival was estimated by the Kaplan‒Meier method and compared by the log-rank test. Multivariate analysis was performed using the Cox proportional hazards model. A cohort of 538 NPC patients was enrolled. There were no significant differences in the 5-year overall survival (OS), progression-free survival (PFS), locoregional relapse-free survival (LRRFS), or distant metastasis-free survival (DMFS) between the cisplatin and nedaplatin groups. During the whole treatment course, patients in the cisplatin group had higher incidences of grade 3‒4 vomiting and anorexia, while patients in the nedaplatin group had higher incidences of grade 3‒4 leucopenia and mucositis. In terms of late toxicities, patients in the cisplatin group had a higher incidence of xerostomia. In multivariate analysis, T stage, N stage, and clinical stage were prognostic factors for OS, PFS, and DMFS. In subgroup analyses, nedaplatin-based chemotherapy achieved comparable treatment outcomes in specific populations stratified by age, sex, ECOG PS score and clinical stage. Cisplatin and nedaplatin are effective choices for stage II-IVa NPC patients, with a different spectrum of side effects.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: