Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 147 papers

MicroRNA-378 limits activation of hepatic stellate cells and liver fibrosis by suppressing Gli3 expression.

  • Jeongeun Hyun‎ et al.
  • Nature communications‎
  • 2016‎

Hedgehog (Hh) signalling regulates hepatic fibrogenesis. MicroRNAs (miRNAs) mediate various cellular processes; however, their role in liver fibrosis is unclear. Here we investigate regulation of miRNAs in chronically damaged fibrotic liver. MiRNA profiling shows that expression of miR-378 family members (miR-378a-3p, miR-378b and miR-378d) declines in carbon tetrachloride (CCl4)-treated compared with corn-oil-treated mice. Overexpression of miR-378a-3p, directly targeting Gli3 in activated hepatic stellate cells (HSCs), reduces expression of Gli3 and profibrotic genes but induces gfap, the inactivation marker of HSCs, in CCl4-treated liver. Smo blocks transcriptional expression of miR-378a-3p by activating the p65 subunit of nuclear factor-κB (NF-κB). The hepatic level of miR-378a-3p is inversely correlated with the expression of Gli3 in tumour and non-tumour tissues in human hepatocellular carcinoma. Our results demonstrate that miR-378a-3p suppresses activation of HSCs by targeting Gli3 and its expression is regulated by Smo-dependent NF-κB signalling, suggesting miR-378a-3p has therapeutic potential for liver fibrosis.


Default mode network connectivity encodes clinical pain: an arterial spin labeling study.

  • Marco L Loggia‎ et al.
  • Pain‎
  • 2013‎

Neuroimaging studies have suggested the presence of alterations in the anatomo-functional properties of the brain of patients with chronic pain. However, investigation of the brain circuitry supporting the perception of clinical pain presents significant challenges, particularly when using traditional neuroimaging approaches. While potential neuroimaging markers for clinical pain have included resting brain connectivity, these cross-sectional studies have not examined sensitivity to within-subject exacerbation of pain. We used the dual regression probabilistic Independent Component Analysis approach to investigate resting-state connectivity on arterial spin labeling data. Brain connectivity was compared between patients with chronic low back pain (cLBP) and healthy controls, before and after the performance of maneuvers aimed at exacerbating clinical pain levels in the patients. Our analyses identified multiple resting state networks, including the default mode network (DMN). At baseline, patients demonstrated stronger DMN connectivity to the pregenual anterior cingulate cortex (pgACC), left inferior parietal lobule, and right insula (rINS). Patients' baseline clinical pain correlated positively with connectivity strength between the DMN and right insula (DMN-rINS). The performance of calibrated physical maneuvers induced changes in pain, which were paralleled by changes in DMN-rINS connectivity. Maneuvers also disrupted the DMN-pgACC connectivity, which at baseline was anticorrelated with pain. Finally, baseline DMN connectivity predicted maneuver-induced changes in both pain and DMN-rINS connectivity. Our results support the use of arterial spin labeling to evaluate clinical pain, and the use of resting DMN connectivity as a potential neuroimaging biomarker for chronic pain perception.


Length and volume of morphologically normal kidneys in korean children: ultrasound measurement and estimation using body size.

  • Jun-Hwee Kim‎ et al.
  • Korean journal of radiology‎
  • 2013‎

To evaluate the relationship between anthropometric measurements and renal length and volume measured with ultrasound in Korean children who have morphologically normal kidneys, and to create simple equations to estimate the renal sizes using the anthropometric measurements.


Functional Connectivity is Associated With Altered Brain Chemistry in Women With Endometriosis-Associated Chronic Pelvic Pain.

  • Sawsan As-Sanie‎ et al.
  • The journal of pain‎
  • 2016‎

In contrast to women with relatively asymptomatic endometriosis, women with endometriosis-associated chronic pelvic pain (CPP) exhibit nonpelvic hyperalgesia and decreased gray matter volume in key neural pain processing regions. Although these findings suggest central pain amplification in endometriosis-associated CPP, the underlying changes in brain chemistry and function associated with central pain amplification remain unknown. We performed proton spectroscopy and seed-based resting functional connectivity magnetic resonance imaging to determine whether women with endometriosis display differences in insula excitatory neurotransmitter concentrations or intrinsic brain connectivity to other pain-related brain regions. Relative to age-matched pain-free controls, women with endometriosis-associated CPP displayed increased levels of combined glutamine-glutamate (Glx) within the anterior insula and greater anterior insula connectivity to the medial prefrontal cortex (mPFC). Increased connectivity between these regions was positively correlated with anterior insula Glx concentrations (r = .87), as well as clinical anxiety (r = .61, P = .02), depression (r = .60, P = .03), and pain intensity (r = .55, P = .05). There were no significant differences in insula metabolite levels or resting-state connectivity in endometriosis patients without CPP versus controls. We conclude that enhanced anterior insula glutamatergic neurotransmission and connectivity with the mPFC, key regions of the salience and default mode networks, may play a role in the pathophysiology of CPP independent of the presence of endometriosis.


MicroRNA125b-mediated Hedgehog signaling influences liver regeneration by chorionic plate-derived mesenchymal stem cells.

  • Jeongeun Hyun‎ et al.
  • Scientific reports‎
  • 2015‎

Although chorionic plate-derived mesenchymal stem cells (CP-MSCs) were shown to promote liver regeneration, the mechanisms underlying the effect remain unclear. Hedgehog (Hh) signaling orchestrates tissue reconstruction in damaged liver. MSCs release microRNAs mediating various cellular responses. Hence, we hypothesized that microRNAs from CP-MSCs regulated Hh signaling, which influenced liver regeneration. Livers were obtained from carbon tetrachloride (CCl4)-treated rats transplanted with human CP-MSCs (Tx) or saline (non-Tx). Sonic Hh, one of Hh ligands, increased in CCl4-treated liver, whereas it decreased in CP-MSC-treated liver with CCl4. The expression of Hh-target genes was significantly downregulated in the Tx. Reduced expansion of progenitors and regressed fibrosis were observed in the liver of the Tx rats. CP-MSCs suppressed the expression of Hh and profibrotic genes in co-cultured LX2 (human hepatic stellate cell) with CP-MSCs. MicroRNA-125b targeting smo was retained in exosomes of CP-MSCs. CP-MSCs with microRNA-125b inhibitor failed to attenuate the expression of Hh signaling and profibrotic genes in the activated HSCs. Therefore, these results demonstrated that microRNA-125b from CP-MSCs suppressed the activation of Hh signaling, which promoted the reduced fibrosis, suggesting that microRNA-mediated regulation of Hh signaling contributed to liver regeneration by CP-MSCs.


Sound tuning of amygdala plasticity in auditory fear conditioning.

  • Sungmo Park‎ et al.
  • Scientific reports‎
  • 2016‎

Various auditory tones have been used as conditioned stimuli (CS) for fear conditioning, but researchers have largely neglected the effect that different types of auditory tones may have on fear memory processing. Here, we report that at lateral amygdala (LA) synapses (a storage site for fear memory), conditioning with different types of auditory CSs (2.8 kHz tone, white noise, FM tone) recruits distinct forms of long-term potentiation (LTP) and inserts calcium permeable AMPA receptor (CP-AMPAR) for variable periods. White noise or FM tone conditioning produced brief insertion (<6 hr after conditioning) of CP-AMPARs, whereas 2.8 kHz tone conditioning induced more persistent insertion (≥6 hr). Consistently, conditioned fear to 2.8 kHz tone but not to white noise or FM tones was erased by reconsolidation-update (which depends on the insertion of CP-AMPARs at LA synapses) when it was performed 6 hr after conditioning. Our data suggest that conditioning with different auditory CSs recruits distinct forms of LA synaptic plasticity, resulting in more malleable fear memory to some tones than to others.


Neuronal activity in dorsomedial and dorsolateral striatum under the requirement for temporal credit assignment.

  • Eun Sil Her‎ et al.
  • Scientific reports‎
  • 2016‎

To investigate neural processes underlying temporal credit assignment in the striatum, we recorded neuronal activity in the dorsomedial and dorsolateral striatum (DMS and DLS, respectively) of rats performing a dynamic foraging task in which a choice has to be remembered until its outcome is revealed for correct credit assignment. Choice signals appeared sequentially, initially in the DMS and then in the DLS, and they were combined with action value and reward signals in the DLS when choice outcome was revealed. Unlike in conventional dynamic foraging tasks, neural signals for chosen value were elevated in neither brain structure. These results suggest that dynamics of striatal neural signals related to evaluating choice outcome might differ drastically depending on the requirement for temporal credit assignment. In a behavioral context requiring temporal credit assignment, the DLS, but not the DMS, might be in charge of updating the value of chosen action by integrating choice, action value, and reward signals together.


Frequency and Clinical Characteristics of Intrachromosomal Amplification of Chromosome 21 in Korean Childhood B-lineage Acute Lymphoblastic Leukemia.

  • Jieun Kim‎ et al.
  • Annals of laboratory medicine‎
  • 2016‎

Intrachromosomal amplification of chromosome 21 (iAMP21) is known to be associated with poor prognosis in B-cell ALL (B-ALL). To determine the frequency and clinical characteristics of iAMP21 in Korean B-ALL patients, we performed FISH and multiplex ligation-dependent probe amplification (MLPA) analyses.


Efficient strategy for the molecular diagnosis of intractable early-onset epilepsy using targeted gene sequencing.

  • John Hoon Rim‎ et al.
  • BMC medical genomics‎
  • 2018‎

We intended to evaluate diagnostic utility of a targeted gene sequencing by using next generation sequencing (NGS) panel in patients with intractable early-onset epilepsy (EOE) and find the efficient analytical step for increasing the diagnosis rate.


Involvement of the P2X7 receptor in the migration and metastasis of tamoxifen-resistant breast cancer: effects on small extracellular vesicles production.

  • Miso Park‎ et al.
  • Scientific reports‎
  • 2019‎

Tamoxifen (TAM) is the standard anti-hormonal therapy for estrogen receptor-positive breast cancer. However, long-term TAM therapy can make acquisition of TAM resistance and there are still no solutions to treat TAM-resistant breast cancer. In this study, we found that protein and mRNA expression of the P2X purinoreceptor 7 (P2X7) was higher in tamoxifen resistant MCF-7 (TAMR-MCF-7) cells than in control MCF-7 cells. P2X7 inhibition potently inhibited the migration of TAMR-MCF-7 cells and the liver metastasis burden of TAMR-MCF-7 cells in the spleen-liver metastasis experiment. However, the P2X7 antagonist did not affect protein expression of matrix metalloproteinase (MMP)-2, MMP-9, and epithelial-mesenchymal transition markers. Here our data indicate a link between small extracellular vesicles (sEV) and P2X7, and suggest a new mechanism of metastasis in TAM-resistant breast cancer cells through P2X7 receptors. The migration of TAMR-MCF-7 cells was increased in a concentration-dependent manner by purified sEV treatment. The number of secreted sEVs and the protein levels of CD63 in TAMR-MCF-7 cells were decreased by the P2X7 antagonist, showing that P2X7 influences the production of sEV. Our results suggest that inhibiting the P2X7 could be considered for metastasis prevention in TAM-resistant cancer patients.


Tumor necrosis factor-inducible gene 6 reprograms hepatic stellate cells into stem-like cells, which ameliorates liver damage in mouse.

  • Sihyung Wang‎ et al.
  • Biomaterials‎
  • 2019‎

Liver fibrosis is a major characteristic of liver disease. When the liver is damaged, quiescent hepatic stellate cells (HSCs) transdifferentiate into proliferative myofibroblastic/activated HSCs, which are the main contributors to liver fibrosis. Hence, a strategy for regulating HSC activation is important in the treatment of liver disease. Tumor necrosis factor-inducible gene 6 protein (TSG-6), a cytokine released from mesenchymal stem cells (MSCs), influences MSC stemness. Therefore, we investigated the biological effect of TSG-6 on HSCs. Human primary HSCs treated with TSG-6 showed significant downregulation of HSC activation markers and upregulation of senescence markers. TSG-6 promoted these cells to express stem cell markers and form spherical organoids, which exhibited elevated expression of stemness-related genes. These organoids differentiated into functional hepatocytic cells under specific culture conditions. Organoids derived from TSG-6-treated HSCs improved livers in organoid transplant mice subjected to CCl4 treatment (which induces liver fibrosis). Furthermore, HSC transdifferentiation by TSG-6 was mediated by Yes-associated protein 1. These findings demonstrate that TSG-6 induces the conversion of HSCs into stem cell-like cells in vitro and that organoids derived from TSG-6-treated HSCs can restore fibrotic liver, suggesting that direct reprogramming of HSCs by TSG-6 can be a useful strategy to control liver disease.


Diagnostic application of clinical exome sequencing in Leber congenital amaurosis.

  • Jinu Han‎ et al.
  • Molecular vision‎
  • 2017‎

Leber congenital amaurosis (LCA) is a hereditary retinal dystrophy with wide genetic heterogeneity. Next-generation sequencing (NGS) targeting multiple genes can be a good option for the diagnosis of LCA, and we tested a clinical exome panel in patients with LCA.


Differential Influence of Acupuncture Somatosensory and Cognitive/Affective Components on Functional Brain Connectivity and Pain Reduction During Low Back Pain State.

  • Jeungchan Lee‎ et al.
  • Frontiers in neuroscience‎
  • 2019‎

The underlying mechanism of pain reduction by acupuncture is still unclear, because acupuncture treatment involves multidimensional factors. In this study, we investigated the differential influence of acupuncture components on brain functional connectivity and on pain reduction. We used a specific form of sham acupuncture (phantom acupuncture; PHNT), which only has a needling-credibility (a belief that they were treated with real acupuncture needles), while real acupuncture (REAL) has a somatosensory needling stimulation, as well as a needling-credibility. Forty-three patients with low back pain were randomized into the REAL group (n = 25) and the PHNT group (n = 18). They underwent two pain steady-state fMRI runs implemented by a low back extension (LBE) pain model (lifting the low back using air-cuff inflation) before and after REAL or PHNT stimulation. Subjective pain ratings, perceived throughout the LBE runs due to the posture, were reported (LBEpain). The regions of interest (ROI) were (1) the main nodes of the default mode network (DMN) - the medial prefrontal cortex (mPFC), posterior cingulate cortex (PCC), (2) the main nodes of the salience network (SN) - the anterior/posterior insular cortices (a/pINS), and (3) the low back-specific region of sensorimotor network (SMN), S1back. Significant reductions in LBEpain were observed in both groups (REAL = -1.02 ± 1.53, PHNT = -1.26 ± 2.20). In REAL group, decreased LBEpain was positively correlated with decreased functional connectivity between the mPFC and pINS (r = 0.58, P < 0.05). Reduced LBEpain in PHNT was negatively correlated with increased PCC-aINS connectivity (r = -0.48, P < 0.05) and tended toward positive correlation with decreased S1back-pINS connectivity (r = 0.44, P = 0.07). Our findings might suggest different brain mechanisms of observed pain reduction; REAL seems to involve detachment of the self from the sensory aspect of pain, while PHNT does to shift attention to self and disengages physical pain processing hubs. This exploratory study proposes a sham methodology to dissociate the influence of different acupuncture components in acupuncture research. Further studies need to be followed with more elaborated hypothesis, study design, and analysis considering various cognitive/affective factors for better understanding of brain mechanisms of pain reduction regarding the different acupuncture aspects.


DISC1 Regulates Neurogenesis via Modulating Kinetochore Attachment of Ndel1/Nde1 during Mitosis.

  • Fei Ye‎ et al.
  • Neuron‎
  • 2017‎

Mutations of DISC1 (disrupted-in-schizophrenia 1) have been associated with major psychiatric disorders. Despite the hundreds of DISC1-binding proteins reported, almost nothing is known about how DISC1 interacts with other proteins structurally to impact human brain development. Here we solved the high-resolution structure of DISC1 C-terminal tail in complex with its binding domain of Ndel1. Mechanistically, DISC1 regulates Ndel1's kinetochore attachment, but not its centrosome localization, during mitosis. Functionally, disrupting DISC1/Ndel1 complex formation prolongs mitotic length and interferes with cell-cycle progression in human cells, and it causes cell-cycle deficits of radial glial cells in the embryonic mouse cortex and human forebrain organoids. We also observed similar deficits in organoids derived from schizophrenia patient induced pluripotent stem cells (iPSCs) with a DISC1 mutation that disrupts its interaction with Ndel1. Our study uncovers a new mechanism of action for DISC1 based on its structure, and it has implications for how genetic insults may contribute to psychiatric disorders.


Motion sickness increases functional connectivity between visual motion and nausea-associated brain regions.

  • Nicola Toschi‎ et al.
  • Autonomic neuroscience : basic & clinical‎
  • 2017‎

The brain networks supporting nausea not yet understood. We previously found that while visual stimulation activated primary (V1) and extrastriate visual cortices (MT+/V5, coding for visual motion), increasing nausea was associated with increasing sustained activation in several brain areas, with significant co-activation for anterior insula (aIns) and mid-cingulate (MCC) cortices. Here, we hypothesized that motion sickness also alters functional connectivity between visual motion and previously identified nausea-processing brain regions. Subjects prone to motion sickness and controls completed a motion sickness provocation task during fMRI/ECG acquisition. We studied changes in connectivity between visual processing areas activated by the stimulus (MT+/V5, V1), right aIns and MCC when comparing rest (BASELINE) to peak nausea state (NAUSEA). Compared to BASELINE, NAUSEA reduced connectivity between right and left V1 and increased connectivity between right MT+/V5 and aIns and between left MT+/V5 and MCC. Additionally, the change in MT+/V5 to insula connectivity was significantly associated with a change in sympathovagal balance, assessed by heart rate variability analysis. No state-related connectivity changes were noted for the control group. Increased connectivity between a visual motion processing region and nausea/salience brain regions may reflect increased transfer of visual/vestibular mismatch information to brain regions supporting nausea perception and autonomic processing. We conclude that vection-induced nausea increases connectivity between nausea-processing regions and those activated by the nauseogenic stimulus. This enhanced low-frequency coupling may support continual, slowly evolving nausea perception and shifts toward sympathetic dominance. Disengaging this coupling may be a target for biobehavioral interventions aimed at reducing motion sickness severity.


Changes in Clinical Characteristics of Community-Acquired Acute Pyelonephritis and Antimicrobial Resistance of Uropathogenic Escherichia coli in South Korea in the Past Decade.

  • Ki Tae Kwon‎ et al.
  • Antibiotics (Basel, Switzerland)‎
  • 2020‎

This study examined changes in the clinical characteristics of community-acquired acute pyelonephritis (CA-APN) in South Korea between the period 2010-2011 and 2017-2018. We recruited all CA-APN patients aged ≥19 years who visited eight hospitals in South Korea from September 2017 to August 2018, prospectively. Data collected were compared with those from the previous study in 2010-2012, with the same design and participation from 11 hospitals. A total of 617 patients were enrolled and compared to 818 patients' data collected in 2010-2011. Escherichia coli was the most common causative pathogen of CA-APN in both periods (87.3% vs. 86.5%, p = 0.680). E. coli isolates showed significantly higher antimicrobial resistance against fluoroquinolone (32.0% vs. 21.6%, p < 0.001), cefotaxime (33.6% vs. 8.3%, p < 0.001), and trimethoprim/sulfamethoxazole (37.5% vs. 29.2%, p = 0.013) in 2017-2018 than in 2010-2011. Total duration of antibiotic treatment increased from 16.55 ± 9.68 days in 2010-2011 to 19.12 ± 9.90 days in 2017-2018 (p < 0.001); the duration of carbapenem usage increased from 0.59 ± 2.87 days in 2010-2011 to 1.79 ± 4.89 days in 2010-2011 (p < 0.001). The median hospitalization was higher for patients in 2017-2018 than in 2010-2011 (9 vs. 7 days, p < 0.001). In conclusion, antimicrobial resistance of E. coli to almost all antibiotic classes, especially third generation cephalosporin, increased significantly in CA-APN in South Korea. Consequently, total duration of antibiotic treatment, including carbapenem usage, increased.


Isorhamnetin Has Potential for the Treatment of Escherichia coli-Induced Sepsis.

  • Anil Kumar Chauhan‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

Isorhamnetin is a flavonoid that is abundant in the fruit of Hippophae rhamnoides L. It is widely studied for its ability to modulate inflammatory responses. In this study, we evaluated the potential of isorhamnetin to prevent gram-negative sepsis. We investigated its efficacy using an Escherichia coli-induced sepsis model. Our study reveals that isorhamnetin treatment significantly enhances survival and reduces proinflammatory cytokine levels in the serum and lung tissue of E. coli-infected mice. Further, isorhamnetin treatment also significantly reduces the levels of aspartate aminotransferase, alanine amino transferase and blood urea nitrogen, suggesting that it can improve liver and kidney function in infected mice. Docking studies reveal that isorhamnetin binds deep in the hydrophobic binding pocket of MD-2 via extensive hydrophobic interactions and hydrogen bonding with Tyr102, preventing TLR4/MD-2 dimerization. Notably, binding and secreted alkaline phosphatase reporter gene assays show that isorhamnetin can interact directly with the TLR4/MD-2 complex, thus inhibiting the TLR4 cascade, which eventually causes systemic inflammation, resulting in death due to cytokine storms. We therefore presume that isorhamnetin could be a suitable therapeutic candidate to treat bacterial sepsis.


Feature optimization method for machine learning-based diagnosis of schizophrenia using magnetoencephalography.

  • Jieun Kim‎ et al.
  • Journal of neuroscience methods‎
  • 2020‎

When many features and a small number of clinical data exist, previous studies have used a few top-ranked features from the Fisher's discriminant ratio (FDR) for feature selection. However, there are many similarities between selected features. New method: To reduce the redundant features, we applied a technique employing FDR in conjunction with feature correlation. We performed an attention network test on schizophrenic patients and normal subjects with a 152-channel magnetoencephalograph. P300m amplitudes of event-related fields (ERFs) were used as features at the sensor level and P300m amplitudes of ERFs for 500 nodes on the cortex surface were used as features at the source level. Features were ranked using FDR criterion and cross-correlation measure, and then the highest ranked 10 features were selected and an exhaustive search was used to find combination having the maximum accuracy.


SARS-CoV-2 Restructures the Host Chromatin Architecture.

  • Ruoyu Wang‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2021‎

SARS-CoV-2 has made >190-million infections worldwide, thus it is pivotal to understand the viral impacts on host cells. Many viruses can significantly alter host chromatin 1 , but such roles of SARS-CoV-2 are largely unknown. Here, we characterized the three-dimensional (3D) genome architecture and epigenome landscapes in human cells after SARS-CoV-2 infection, revealing remarkable restructuring of host chromatin architecture. High-resolution Hi-C 3.0 uncovered widespread A compartmental weakening and A-B mixing, together with a global reduction of intra-TAD chromatin contacts. The cohesin complex, a central organizer of the 3D genome, was significantly depleted from intra-TAD regions, supporting that SARS-CoV-2 disrupts cohesin loop extrusion. Calibrated ChIP-Seq verified chromatin restructuring by SARS-CoV-2 that is particularly manifested by a pervasive reduction of euchromatin modifications. Built on the rewired 3D genome/epigenome maps, a modified activity-by-contact model 2 highlights the transcriptional weakening of antiviral interferon response genes or virus sensors (e.g., DDX58 ) incurred by SARS-CoV-2. In contrast, pro-inflammatory genes (e.g. IL-6 ) high in severe infections were uniquely regulated by augmented H3K4me3 at their promoters. These findings illustrate how SARS-CoV-2 rewires host chromatin architecture to confer immunological gene deregulation, laying a foundation to characterize the long-term epigenomic impacts of this virus.


Ibrutinib modulates Aβ/tau pathology, neuroinflammation, and cognitive function in mouse models of Alzheimer's disease.

  • Hyun-Ju Lee‎ et al.
  • Aging cell‎
  • 2021‎

We previously demonstrated that ibrutinib modulates LPS-induced neuroinflammation in vitro and in vivo, but its effects on the pathology of Alzheimer's disease (AD) and cognitive function have not been investigated. Here, we investigated the effects of ibrutinib in two mouse models of AD. In 5xFAD mice, ibrutinib injection significantly reduced Aβ plaque levels by promoting the non-amyloidogenic pathway of APP cleavage, decreased Aβ-induced neuroinflammatory responses, and significantly downregulated phosphorylation of tau by reducing levels of phosphorylated cyclin-dependent kinase-5 (p-CDK5). Importantly, tau-mediated neuroinflammation and tau phosphorylation were also alleviated by ibrutinib injection in PS19 mice. In 5xFAD mice, ibrutinib improved long-term memory and dendritic spine number, whereas in PS19 mice, ibrutinib did not alter short- and long-term memory but promoted dendritic spinogenesis. Interestingly, the induction of dendritic spinogenesis by ibrutinib was dependent on the phosphorylation of phosphoinositide 3-kinase (PI3K). Overall, our results suggest that ibrutinib modulates AD-associated pathology and cognitive function and may be a potential therapy for AD.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: