Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 20 papers

Identification and functional characterization of small non-coding RNAs in Xanthomonas oryzae pathovar oryzae.

  • Hong Liang‎ et al.
  • BMC genomics‎
  • 2011‎

Small non-coding RNAs (sRNAs) are regarded as important regulators in prokaryotes and play essential roles in diverse cellular processes. Xanthomonas oryzae pathovar oryzae (Xoo) is an important plant pathogenic bacterium which causes serious bacterial blight of rice. However, little is known about the number, genomic distribution and biological functions of sRNAs in Xoo.


PKA and ERK1/2 are involved in dopamine D₁ receptor-induced heterologous desensitization of the δ opioid receptor.

  • Wei Xu‎ et al.
  • Life sciences‎
  • 2013‎

Chronic administration of cocaine attenuates delta opioid receptor (DOPR) signaling in the striatum and the desensitization is mediated by the indirect actions of cocaine on dopamine D1 receptors (D1R). In addition, DOPR and D1R co-exist in some rat striatal neurons. In the present study, we examined the underlying mechanism of DOPR desensitization by D1R activation.


Carbohydrate stress affecting fruitlet abscission and expression of genes related to auxin signal transduction pathway in litchi.

  • Jian-Fei Kuang‎ et al.
  • International journal of molecular sciences‎
  • 2012‎

Auxin, a vital plant hormone, regulates a variety of physiological and developmental processes. It is involved in fruit abscission through transcriptional regulation of many auxin-related genes, including early auxin responsive genes (i.e., auxin/indole-3-acetic acid (AUX/IAA), Gretchen Hagen3 (GH3) and small auxin upregulated (SAUR)) and auxin response factors (ARF), which have been well characterized in many plants. In this study, totally five auxin-related genes, including one AUX/IAA (LcAUX/IAA1), one GH3 (LcGH3.1), one SAUR (LcSAUR1) and two ARFs (LcARF1 and LcARF2), were isolated and characterized from litchi fruit. LcAUX/IAA1, LcGH3.1, LcSAUR1, LcARF1 and LcARF2 contain open reading frames (ORFs) encoding polypeptides of 203, 613, 142, 792 and 832 amino acids, respectively, with their corresponding molecular weights of 22.67, 69.20, 11.40, 88.20 and 93.16 kDa. Expression of these genes was investigated under the treatment of girdling plus defoliation which aggravated litchi fruitlet abscission due to the blockage of carbohydrates transport and the reduction of endogenous IAA content. Results showed that transcript levels of LcAUX/IAA1, LcGH3.1 and LcSAUR1 mRNAs were increased after the treatment in abscission zone (AZ) and other tissues, in contrast to the decreasing accumulation of LcARF1 mRNA, suggesting that LcAUX/IAA1, LcSAUR1 and LcARF1 may play more important roles in abscission. Our results provide new insight into the process of fruitlet abscission induced by carbohydrate stress and broaden our understanding of the auxin signal transduction pathway in this process at the molecular level.


Full recovery of the Alzheimer's disease phenotype by gain of function of vacuolar protein sorting 35.

  • Jian-Guo Li‎ et al.
  • Molecular psychiatry‎
  • 2020‎

Deficit in retromer complex function secondary to lower levels of one of its major components, the vacuolar protein sorting 35 (VPS35), has been reported in Alzheimer's disease (AD) brains. VPS35 genetic reduction results in increased Aβ levels and synaptic pathology in mouse models of the disease. However, whether restoration of its levels has an effect on the AD-like phenotype which includes Aβ plaques, tau tangles and memory impairments remain unknown. In this paper, we investigated the effect of VPS35 gene delivery into the central nervous system on the development of the neuropathology and behavioral deficits of the triple transgenic (3xTg) mice. Compared with controls, animals overexpressing VPS35 had an amelioration of spatial learning and working memory, which associated with a significant reduction in Aβ levels and deposition and tau phosphorylation. Additionally, the same animals had a significant improvement of synaptic pathology and neuroinflammation. In vitro study confirmed that VPS35 up-regulation by reducing total levels of APP and results in a significant decrease in its metabolic products. Our results demonstrate for the first time that VPS35 is directly involved in the development of AD-like phenotype, and for this reason should be considered as a novel therapeutic target for AD.


Effects of microRNA-223 on morphine analgesic tolerance by targeting NLRP3 in a rat model of neuropathic pain.

  • Xiao-Juan Xie‎ et al.
  • Molecular pain‎
  • 2017‎

Objective To investigate the effects of microRNA-223 on morphine analgesic tolerance by targeting NLRP3 in a rat model of neuropathic pain. Methods Our study selected 100 clean grade healthy Sprague-Dawley adult male rats weighing 200 to 250 g. After establishment of a rat model of chronic constriction injury, these rats were divided into 10 groups (10 rats in each group): the normal control, sham operation, chronic constriction injury, normal saline, morphine, miR-223, NLRP3, miR-223 + morphine, NLRP3 + morphine, and miR-223 + NLRP3 + morphine groups. The real-time quantitative polymerase chain reaction assay, Western blotting, and enzyme-linked immunosorbent assay were used for detecting the mRNA and protein expressions of NLRP3, apoptosis-associated speck-like protein, Caspase-1, Interleukin (IL)-1β, and IL-18 in sections of lumbar spinal cord. Immunohistochemistry was applied for detecting the positive rates of NLRP3, apoptosis-associated speck-like protein, Caspase-1, IL-1β, and IL-18. Results The paw withdrawal threshold and percentage maximum possible effect (%MPE) were higher in chronic constriction injury group when compared with the normal control and sham operation groups. Behavioral tests showed that compared with the chronic constriction injury and normal saline groups, the morphine and miR-223 + morphine groups showed obvious analgesic effects. Expressions of miR-223 in the miR-223, miR-223 + morphine, and miR-223 + NLRP3 + morphine were significantly higher than those in the chronic constriction injury, normal saline, and morphine groups. Compared with chronic constriction injury, normal saline and morphine groups, the mRNA and protein expressions of NLRP3, apoptosis-associated speck-like protein, Caspase-1, IL-1β, and IL-18 were significantly decreased in the miR-223 and miR-223 + morphine groups, while mRNA and protein expressions of NLRP3, apoptosis-associated speck-like protein, Caspase-1, IL-1β, and IL-18 were significantly increased in the NLRP3 and NLRP3 + morphine group. Conclusion Our study provides strong evidence that miR-223 could suppress the activities of NLRP3 inflammasomes ( NLRP3, apoptosis-associated speck-like protein, and Caspase-1) to relieve morphine analgesic tolerance in rats by down-regulating NLRP3.


A National Multicenter Survey on Management of Pain, Agitation, and Delirium in Intensive Care Units in China.

  • Jing Wang‎ et al.
  • Chinese medical journal‎
  • 2017‎

The management of pain, agitation, and delirium (PAD) in Intensive Care Unit (ICU) is beneficial for patients and makes it widely applied in clinical practice. Previous studies showed that the clinical practice of PAD in ICU was improving; yet relatively little information is available in China. This study aimed to investigate the practice of PAD in ICUs in China.


Antibiotic Resistance Patterns and Molecular Characterization of Streptococcus suis Isolates from Swine and Humans in China.

  • Chang-Zhen Wang‎ et al.
  • Microbiology spectrum‎
  • 2023‎

Streptococcus suis is a zoonotic pathogen that causes disease in humans after exposure to infected pigs or pig-derived food products. In this study, we examined the serotype distribution, antimicrobial resistance phenotypes and genotypes, integrative and conjugative elements (ICEs), and associated genomic environments of S. suis isolates from humans and pigs in China from 2008 to 2019. We identified isolates of 13 serotypes, predominated by serotype 2 (40/96; 41.7%), serotype 3 (10/96; 10.4%), and serotype 1 (6/96; 6.3%). Whole-genome sequencing analysis revealed that these isolates possessed 36 different sequence types (STs), and ST242 and ST117 were the most prevalent. Phylogenetic analysis revealed possible animal and human clonal transmission, while antimicrobial susceptibility testing indicated high-level resistance to macrolides, tetracyclines, and aminoglycosides. These isolates carried 24 antibiotic resistance genes (ARGs) that conferred resistance to 7 antibiotic classes. The antibiotic resistance genotypes were directly correlated with the observed phenotypes. We also identified ICEs in 10 isolates, which were present in 4 different genetic environments and possessed differing ARG combinations. We also predicted and confirmed by PCR analysis the existence of a translocatable unit (TU) in which the oxazolidinone resistance gene optrA was flanked by IS1216E elements. One-half (5/10) of the ICE-carrying strains could be mobilized by conjugation. A comparison of the parental recipient with an ICE-carrying transconjugant in a mouse in vivo thigh infection model indicated that the ICE strain could not be eliminated with tetracycline treatment. S. suis therefore poses a significant challenge to global public health and requires continuous monitoring, especially for the presence of ICEs and associated ARGs that can be transferred via conjugation. IMPORTANCE S. suis is a serious zoonotic pathogen. In this study, we investigated the epidemiological and molecular characteristics of 96 S. suis isolates from 10 different provinces of China from 2008 to 2019. A subset of these isolates (10) carried ICEs that were able to be horizontally transferred among isolates of different S. suis serotypes. A mouse thigh infection model revealed that ICE-facilitated ARG transfer promoted resistance development. S. suis requires continuous monitoring, especially for the presence of ICEs and associated ARGs that can be transferred via conjugation.


Five lipoxygenase hypomethylation mediates the homocysteine effect on Alzheimer's phenotype.

  • Jian-Guo Li‎ et al.
  • Scientific reports‎
  • 2017‎

Environmental and genetic risk factors are implicated in the pathogenesis of Alzheimer's disease (AD). However, how they interact and influence its pathogenesis remains to be investigated. High level of homocysteine (Hcy) is an AD risk factor and associates with an up-regulation of the ALOX5 gene. In the current paper we investigated whether this activation is responsible for the Hcy effect on the AD phenotype and the mechanisms involved. Triple transgenic mice were randomized to receive regular chow diet, a diet deficient in folate and B vitamins (Diet), which results in high Hcy, or the Diet plus zileuton, a specific ALOX5 inhibitor, for 7 months. Compared with controls, Diet-fed mice had a significant increase in Hcy levels, memory and learning deficits, up-regulation of the ALOX5 pathway, increased Aβ levels, tau phosphorylation, and synaptic pathology, which were absent in mice treated with zileuton. In vivo and vitro studies demonstrated that the mechanism responsible was the hypomethylation of the ALOX5 promoter. Our findings demonstrate that the up-regulation of the ALOX5 is responsible for the Hcy-dependent worsening of the AD phenotype in a relevant mouse model of the disease. The discovery of this previously unknown cross-talk between these two pathways could afford novel therapeutic opportunities for treating or halting AD.


Probiotics for Preventing Ventilator-Associated Pneumonia in Mechanically Ventilated Patients: A Meta-Analysis with Trial Sequential Analysis.

  • Hong Weng‎ et al.
  • Frontiers in pharmacology‎
  • 2017‎

Background and Objective: Ventilator-associated pneumonia (VAP) is still an important cause of morbidity and mortality in mechanically ventilated patients. The efficacy of the probiotics for preventing VAP is still controversial. Present study was conducted to comprehensively evaluate the effect of probiotics on VAP prevention in mechanically ventilated patients. Methods: PubMed, Embase, and CENTRAL were searched up to September 2016. Eligible trials designed with randomized controlled trials (RCTs) comparing probiotics with control in mechanically ventilated patients were included. Risk ratios (RRs) and mean differences (MDs) with 95% confidence intervals (CIs) were estimated with fixed or random effects models. Trial sequential analysis (TSA) was performed using TSA 0.9beta software. Results: Thirteen RCTs (N = 1969) were included. Overall, probiotics were associated with reduced incidence of VAP (RR = 0.73, 95% CI = 0.60-0.89; P = 0.002), which was confirmed by TSA (TSA adjusted 95% CI = 0.55-0.96). However, no significant difference was observed in 90-day mortality (RR = 1.00, 95% CI = 0.72-1.37; P = 0.99), overall mortality (RR = 0.84, 95% CI = 0.70-1.02; P = 0.09), 28-day mortality (RR = 1.06, 95% CI = 0.72-1.57; P = 0.99), intensive care unit (ICU) mortality (RR = 0.97, 95% CI = 0.74-1.27; P = 0.82), hospital mortality (RR = 0.81, 95% CI = 0.65-1.02; P = 0.07), diarrhea (RR = 0.99, 95% CI = 0.83-1.19; P = 0.92), length of ICU stay (MD = -2.40 days, 95% CI = -6.75 to 1.95; P = 0.28), length of hospital stay (MD = -1.34 days, 95% CI = -6.21 to 3.54; P = 0.59), and duration of mechanical ventilation (MD = -3.32 days, 95% CI = -6.74 to 0.09; P = 0.06). Conclusions: In this meta-analysis, we found that probiotics could reduce the incidence of VAP in mechanically ventilated patients. It seems likely that probiotics provide clinical benefits for mechanically ventilated patients.


Th2 predominance and CD8+ memory T cell depletion in patients with severe acute respiratory syndrome.

  • Jia-Ling Huang‎ et al.
  • Microbes and infection‎
  • 2005‎

The immune spectrum of severe acute respiratory syndrome (SARS) is poorly understood. To define the dynamics of the immune spectrum in SARS, serum levels of cytokines, chemokines, immunoglobulins, complement and specific antibodies against SARS-associated coronavirus (SARS-CoV) were assayed by enzyme-linked immunosorbent assay (ELISA), and phenotypes of peripheral lymphocytes were analyzed by flow cytometry in 95 SARS-infected patients. Results showed that interleukin (IL)-10 and transforming growth factor beta (TGF-beta) were continuously up-regulated during the entirety of SARS. Regulated on activation normally T cell-expressed and secreted (RANTES) levels were decreased, while monocyte chemoattractant protein-1 (MCP-1) was elevated in acute patients. Immunoglobulins and complement were elevated during the first month of SARS. Both serum-positive rates and titers of specific IgM and IgG antibodies responding to SARS-CoV peaked at days 41-60 from the onset of SARS. CD4+ and CD8+ T lymphocytes decreased significantly in acute-phase. CD3+CD8+CD45RO+ T lymphocytes were decreased by 36.78% in the convalescent patients.


Homocysteine modulates 5-lipoxygenase expression level via DNA methylation.

  • Jian-Guo Li‎ et al.
  • Aging cell‎
  • 2017‎

Elevated levels of homocysteinemia (Hcy), a risk factor for late-onset Alzheimer's disease (AD), have been associated with changes in cell methylation. Alzheimer's disease is characterized by an upregulation of the 5-lipoxygenase (5LO), whose promoter is regulated by methylation. However, whether Hcy activates 5LO enzymatic pathway by influencing the methylation status of its promoter remains unknown. Brains from mice with high Hcy were assessed for the 5LO pathway and neuronal cells exposed to Hcy implemented to study the mechanism(s) regulating 5LO expression levels and the effect on amyloid β formation. Diet- and genetically induced high Hcy resulted in 5LO protein and mRNA upregulation, which was associated with a significant increase of the S-adenosylhomocysteine (SAH)/S-adenosylmethionine ratio, and reduced DNA methyltrasferases and hypomethylation of 5-lipoxygenase DNA. In vitro studies confirmed these results and demonstrated that the mechanism involved in the Hcy-dependent 5LO activation and amyloid β formation is DNA hypomethylation secondary to the elevated levels of SAH. Taken together these findings represent the first demonstration that Hcy directly influences 5LO expression levels and establish a previously unknown cross talk between these two pathways, which is highly relevant for AD pathogenesis. The discovery of such a novel link not only provides new mechanistic insights in the neurobiology of Hcy, but most importantly new therapeutic opportunities for the individuals bearing this risk factor for the disease.


A pharmacological chaperone improves memory by reducing Aβ and tau neuropathology in a mouse model with plaques and tangles.

  • Jian-Guo Li‎ et al.
  • Molecular neurodegeneration‎
  • 2020‎

The vacuolar protein sorting 35 (VPS35) is a major component of the retromer complex system, an ubiquitous multiprotein assembly responsible for sorting and trafficking protein cargos out of the endosomes. VPS35 can regulate APP metabolism and Aβ formation, and its levels are reduced in Alzheimer's disease (AD) brains. We and others demonstrated that VPS35 genetic manipulation modulates the phenotype of mouse models of AD. However, the translational value of this observation remains to be investigated.


Activation of δ-opioid Receptors in Anterior Cingulate Cortex Alleviates Affective Pain in Rats.

  • Yang Ma‎ et al.
  • Neuroscience‎
  • 2022‎

The negative emotions caused by persistent pain, called affective pain, are known to seriously affect human physical and mental health. The anterior cingulate cortex (ACC), especially the rostral ACC (rACC) plays a key role in the development of this affective pain. N-methyl-d-aspartate (NMDA) receptors, which are widely distributed in the ACC, are involved in the regulation of emotional behavior. It is well known that activation of opioid receptors can relieve pain, but whether it can alleviate affective pain is not clear. In the present study, conditioned place avoidance (CPA) responses induced by complete Freund's adjuvant (CFA) were used to represent the affective pain of place aversion. The behavioral measurements were synchronously combined with multichannel electrophysiological recordings of the discharge frequency of rACC pyramidal neurons to explore whether affective pain could be alleviated by the synthetic opioid [D-Ala2, D-Leu5]-Enkefalin (DADLE), an agonist of δ-opioid receptors. To further investigate this treatment as a mechanism for the relief of affective pain in CFA-treated animals, we used whole-cell patch recordings in slice preparations of the rACC region to determine the dose-dependent effects of DADLE on NMDA receptor-mediated currents. Then, western blot was used to determine levels of phosphorylated NMDA receptor subunits GluN1, GluN2 and GluN3 as affected by the δ-opioid receptor activation. The results showed that activation of δ-opioid receptors down-regulates the phosphorylation of NMDA receptor subunits, thereby inhibiting NMDA currents, decreasing the discharge frequency of rACC pyramidal neurons, and reversing the CPA response. Thus, δ-opioid receptor activation in the rACC region can alleviate affective pain.


Colonization of multidrug-resistant Gram-negative bacteria increases risk of surgical site infection after hemorrhoidectomy: a cross-sectional study of two centers in southern China.

  • Jian-Guo Li‎ et al.
  • International journal of colorectal disease‎
  • 2023‎

The present study aims to determine the rectoanal colonization rate and risk factors for the colonization of present multidrug-resistant bacteria (MDRBs). In addition, the relationship between MDRB colonization and surgical site infection (SSI) following hemorrhoidectomy was explored.


A Cohort Study on Deficiency of ADA2 from China.

  • Guo-Min Li‎ et al.
  • Journal of clinical immunology‎
  • 2023‎

Deficiency of adenosine deaminase 2 (DADA2), an autosomal recessive autoinflammatory disorder caused by biallelic loss-of-function variants in adenosine deaminase 2 (ADA2), has not been systemically investigated in Chinese population yet. We aim to further characterize DADA2 cases in China.


Elevated levels of brain homocysteine directly modulate the pathological phenotype of a mouse model of tauopathy.

  • Antonio Di Meco‎ et al.
  • Molecular psychiatry‎
  • 2019‎

A high circulating level of homocysteine (Hcy), also known as hyperhomocysteinemia, is a risk factor for Alzheimer's disease (AD). Previous studies show that elevated Hcy promotes brain amyloidosis and behavioral deficits in mouse models of AD. However, whether it directly modulates the development of tau neuropathology independently of amyloid beta in vivo is unknown. Herein, we investigate the effect of diet-induced elevated levels of brain Hcy on the phenotype of a relevant mouse model of human tauopathy. Compared with controls, tau mice fed with low folate and B vitamins diet had a significant increase in brain Hcy levels and worsening of behavioral deficits. The same mice had a significant elevation of tau phosphorylation, synaptic pathology, and astrocytes activation. In vitro studies demonstrated that Hcy effect on tau phosphorylation was mediated by an upregulation of 5-lipoxygenase via cdk5 kinase pathway activation. Our findings support the novel concept that high Hcy level in the central nervous system is a metabolic risk factor for neurodegenerative diseases, specifically characterized by the progressive accumulation of tau pathology, namely tauopathies.


Effects of exogenous sulfur on alleviating cadmium stress in tartary buckwheat.

  • Yang Lu‎ et al.
  • Scientific reports‎
  • 2019‎

Supplying exogenous sulfur-rich compounds increases the content of glutathione(GSH) and phytochelatins(PCs) in plant tissues, enabling plants to enhance their cellular defense capacity and/or compartmentalize Cadmium(Cd) into vacuoles. However, the mechanism by which surplus S modulates tolerance to Cd stress in different tissues need further investigation. In the present study, we found that supplementing the tartary buckwheat(Fagopyrum tararicum) exposed to Cd with surplus S reversed Cd induced adverse effects, and increased Cd concentrations in roots, but decreased in leaves. Further analysis revealed that exogenous S significantly mitigated Cd-induced oxidative stress with the aids of antioxidant enzymes and agents both in leaves and roots, including peroxidase(POD), ascorbate peroxidase(APX), glutathione peroxidase(GPX), glutathione S-transferase(GST), ascorbic acid(AsA), and GSH, but not superoxide dismutase(SOD) and catalase(CAT). The increased Cd uptake in root vacuoles and decreased translocation in leaves of exogenous S treated plants could be ascribed to the increasing Cd binding on cell walls, chelation and vacuolar sequestration with helps of non-protein thiols(NPT), PCs and heavy metal ATPase 3(FtHMA3) in roots, and inhibiting expression of FtHMA2, a transporter that helps Cd translocation from roots to shoots. Results provide the fundamental information for the application of exogenous S in reversal of heavy metal stress.


Biosynthesis of quebrachitol, a transportable photosynthate, in Litchi chinensis.

  • Zi-Chen Wu‎ et al.
  • Journal of experimental botany‎
  • 2018‎

Although methylated cyclitols constitute a major proportion of the carbohydrates in many plant species, their physiological roles and biosynthetic pathway are largely unknown. Quebrachitol (2-O-methyl-chiro-inositol) is one of the major methylated cyclitols in some plant species. In litchi, quebrachitol represents approximately 50% of soluble sugars in mature leaves and 40% of the total sugars in phloem exudate. In the present study, we identified bornesitol as a transient methylated intermediate of quebrachitol and measured the concentrations of methyl-inositols in different tissues and in tissues subjected to different treatments. 14CO2 feeding and phloem exudate experiments demonstrated that quebrachitol is one of the transportable photosynthates. In contrast to other plant species, the biosynthesis of quebrachitol in litchi is not associated with osmotic stress. High quebrachitol concentrations in tissues of the woody plant litchi might represent a unique carbon metabolic strategy that maintains osmolality under reduced-sucrose conditions. The presence of bornesitol but not ononitol in the leaves indicates a different biosynthetic pathway with pinitol. The biosynthesis of quebrachitol involves the methylation of myo-inositol and the subsequent epimerization of bornesitol. An inositol methyltransferase gene (LcIMT1) responsible for bornesitol biosynthesis was isolated and characterized for the first time, and the biosynthesis pathways of methyl-inositols are discussed.


CircMTO1 Attenuated Acute Kidney Injury Through Regulating miR-337.

  • Chuan-Chuan Shi‎ et al.
  • Inflammation‎
  • 2020‎

Acute kidney injury (AKI) is an independent risk factor for the increased risk of death in patients with sepsis. In the current study, we first investigated the expression of circMTO1 in sepsis-induced AKI, and the underlying mechanism was further elucidated. The results showed that circMTO1 expression level was significantly decreased in serums and kidney tissues of US rats and RMCs treated with LPS. Besides, circMTO1 overexpression promoted cell viability, suppressed cell apoptosis and cytokines production of LPS-treated RMCs. Bioinformatics analysis showed that circMTO1 served as a sponge for miR-337. Furthermore, circMTO1 could inhibit the expression of KLF6. Altogether, our study first reported that circMTO1 expression was decreased in sepsis-induced AKI rat models and RMCs treated with LPS. CircMTO1 overexpression could attenuate AKI development by sponging miR-337 and regulating KLF6 expression, which may provide new ideas for evaluation the pathogenesis and the treatment of sepsis-induced AKI.


VPS35 regulates tau phosphorylation and neuropathology in tauopathy.

  • Alana N Vagnozzi‎ et al.
  • Molecular psychiatry‎
  • 2021‎

The vacuolar protein sorting 35 (VPS35) is a major component of the retromer recognition core complex which regulates intracellular protein sorting and trafficking. Deficiency in VPS35 by altering APP/Aβ metabolism has been linked to late-onset Alzheimer's disease. Here we report that VPS35 is significantly reduced in Progressive Supra-nuclear Palsy and Picks' disease, two distinct primary tauopathies. In vitro studies show that overexpression of VPS35 leads to a reduction of pathological tau in neuronal cells, whereas genetic silencing of VPS35 results in its accumulation. Mechanistically the availability of active cathepsin D mediates the effect of VPS35 on pathological tau accumulation. Moreover, in a relevant transgenic mouse model of tauopathy, down-regulation of VPS35 results in an exacerbation of motor and learning impairments as well as accumulation of pathological tau and loss of synaptic integrity. Taken together, our data identify VPS35 as a novel critical player in tau metabolism and neuropathology, and a new therapeutic target for human tauopathies.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: