2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

N-Acetylcysteine Reduces ROS-Mediated Oxidative DNA Damage and PI3K/Akt Pathway Activation Induced by Helicobacter pylori Infection.

  • Chuan Xie‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2018‎

H. pylori infection induces reactive oxygen species- (ROS-) related DNA damage and activates the PI3K/Akt pathway in gastric epithelial cells. N-Acetylcysteine (NAC) is known as an inhibitor of ROS; the role of NAC in H. pylori-related diseases is unclear.


N-Acetyltransferase 10 Enhances Doxorubicin Resistance in Human Hepatocellular Carcinoma Cell Lines by Promoting the Epithelial-to-Mesenchymal Transition.

  • Xiuming Zhang‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2019‎

N-Acetyltransferase 10 (NAT10) has been reported to be expressed at high levels in hepatocellular carcinoma (HCC); however, its role in chemoresistance is unclear. This study is aimed at investigating whether NAT10 regulates the epithelial-mesenchymal transition (EMT) and chemoresistance in HCC.


Methionine Sulfoxide Reductase B1 Regulates Hepatocellular Carcinoma Cell Proliferation and Invasion via the Mitogen-Activated Protein Kinase Pathway and Epithelial-Mesenchymal Transition.

  • Qiang He‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2018‎

Methionine sulfoxide reductase B1 (MsrB1) is a member of the selenoprotein family, which contributes to the reduction of methionine sulfoxides produced from reactive oxygen species (ROS) by redox processes in energy pathways. However, few studies have examined the role of MsrB1 in human hepatocellular carcinoma (HCC). We observed that MsrB1 is highly expressed in HCC tissues and that its expression correlated with the prognoses of patients with HCC after hepatectomy. In vitro, knockdown of MsrB1 inhibits HCC cell growth by MTT and EdU proliferation assay, and MsrB1 interference enhances H2O2/trx-induced apoptosis. We observed that phosphorylation of the key proteins of the MAPK pathway, namely, ERK, MEK, and p53, was inhibited, but PARP and caspase 3 were increased, thus infecting mitochondrial integrity. In vivo, MsrB1 knockdown effectively inhibited tumor growth. Furthermore, MsrB1 knockdown reduced HCC cell migration and invasion in a transwell assay through inhibition of cytoskeletal rearrangement and spread. This change was linked to epithelial-mesenchymal transition (EMT) inhibition resulting from increases in E-cadherin expression and decreases in expression in TGF-β1, Slug, MMP-2/9, and so on. MsrB1 regulates HCC cell proliferation and migration by modulating the MAPK pathway and EMT. Thus, MsrB1 may be a novel therapeutic target with respect to the treatment of HCC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: