Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

Cooperative control between AtRGS1 and AtHXK1 in a WD40-repeat protein pathway in Arabidopsis thaliana.

  • Jian-Ping Huang‎ et al.
  • Frontiers in plant science‎
  • 2015‎

HEXOKINASE 1 (AtHXK1) and Regulator of G-protein Signaling 1 (AtRGS1) pathways, mediate D-glucose signaling in Arabidopsis. However, it is not known the degree, if any, that these pathways overlap and how. We show modest signaling crosstalk between these pathways, albeit complex with both epistatic interactions and additive effects that may be indirect. The action of HXK1 on AtRGS1 signaling lies downstream of the primary step in G protein-mediated sugar signaling in which the WD-repeat protein, AGB1, is the propelling signaling element. RHIP1, a previously unknown protein predicted here to have a 3-stranded helical structure, interacts with both AtRGS1 and AtHXK1 in planta and is required for some glucose-regulated gene expression, providing a physical connection between these two proteins in sugar signaling. The rhip1 null mutant displays similar seedling growth phenotypes as rgs1-2 in response to glucose, further suggesting a role for RHIP1 in glucose signaling. In conclusion, glucose signaling is a complex hierarchical relationship which is specific to the target gene and sugar phenotype and suggests that there are two glycolysis-independent glucose signaling sensors: AtRGS1 and AtHXK1 that weakly communicate with each other via feed-back and feed-forward loops to fine tune the response to glucose.


α-Pyrone Derivatives from a Streptomyces Strain Resensitize Tamoxifen Resistance in Breast Cancer Cells.

  • Rui-Min Yang‎ et al.
  • Natural products and bioprospecting‎
  • 2017‎

Tamoxifen resistance (TamR) is the underlying cause of treatment failure in many breast cancer patients receiving tamoxifen. In order to look for noncytotoxic natural products with the ability to reverse TamR, an extract from strain Streptomyces sp. KIB-H0495 was detected to be active. Subsequent large scale fermentation and isolation led to the isolation of four α-pyrone derivatives including two new compounds, violapyrones J (2) and K (3), and two known analogues, violapyrones B (1) and I (4). Further bioactivity assays indicated that only 1 and 3 exerted potent resensitization effects on MCF-7/TamR cells at a concentration of 1 μM. Owing to the simple structures of 1 and 3, these two compounds might have potential for further investigation as novel tamoxifen resensitization agent in breast cancer chemotherapy.


Kalirin-7, an important component of excitatory synapses, is regulated by estradiol in hippocampal neurons.

  • Xin-Ming Ma‎ et al.
  • Hippocampus‎
  • 2011‎

Estradiol enhances the formation of dendritic spines and excitatory synapses in hippocampal neurons in vitro and in vivo, but the underlying mechanisms are not fully understood. Kalirin-7 (Kal7), the major isoform of Kalirin in the adult hippocampus, is a Rho GDP/GTP exchange factor localized to postsynaptic densities. In the hippocampus, both Kal7 and estrogen receptor α (ERα) are highly expressed in a subset of interneurons. Over-expression of Kal7 caused an increase in spine density and size in hippocampal neurons. To determine whether Kalirin might play a role in the effects of estradiol on spine formation, Kal7 expression was examined in the hippocampus of ovariectomized rats. Estradiol replacement increased Kal7 staining in both CA1 pyramidal neurons and interneurons in ovariectomized rats. Estradiol treatment of cultured hippocampal neurons increased Kal7 levels at the postsynaptic side of excitatory synapses and increased the number of excitatory synapses along the dendrites of pyramidal neurons. These increases were mediated via ERα because a selective ERα agonist, but not a selective ERβ agonist, caused a similar increase in both Kal7 levels and excitatory synapse number in cultured hippocampal neurons. When Kal7 expression was reduced using a Kal7-specific shRNA, the density of excitatory synapses was reduced and estradiol was no longer able to increase synapse formation. Expression of exogenous Kal7 in hippocampal interneurons resulted in decreased levels of GAD65 staining. Inhibition of GABAergic transmission with bicuculline produced a robust increase in Kal7 expression. These studies suggest Kal7 plays a key role in the mechanisms of estradiol-mediated synaptic plasticity.


Association of alcohol consumption and components of metabolic syndrome among people in rural China.

  • Jing Xiao‎ et al.
  • Nutrition & metabolism‎
  • 2015‎

Accumulative evidence in the literature suggests alcohol consumption is a protective factor of the metabolic syndrome (MS). However, few studies investigated the relationship between alcohol consumption and components of MS. We examined association of several types of alcoholic beverage with components of MS among people in rural China.


Genomic and structural basis for evolution of tropane alkaloid biosynthesis.

  • Yong-Jiang Wang‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

The tropane alkaloids (TAs) cocaine and hyoscyamine have been used medicinally for thousands of years. To understand the evolutionary origins and trajectories of serial biosynthetic enzymes of TAs and especially the characteristic tropane skeletons, we generated the chromosome-level genome assemblies of cocaine-producing Erythroxylum novogranatense (Erythroxylaceae, rosids clade) and hyoscyamine-producing Anisodus acutangulus (Solanaceae, asterids clade). Comparative genomic and phylogenetic analysis suggested that the lack of spermidine synthase/N-methyltransferase (EnSPMT1) in ancestral asterids species contributed to the divergence of polyamine (spermidine or putrescine) methylation in cocaine and hyoscyamine biosynthesis. Molecular docking analysis and key site mutation experiments suggested that ecgonone synthases CYP81AN15 and CYP82M3 adopt different active-site architectures to biosynthesize the same product ecgonone from the same substrate in Erythroxylaceae and Solanaceae. Further synteny analysis showed different evolutionary origins and trajectories of CYP81AN15 and CYP82M3, particularly the emergence of CYP81AN15 through the neofunctionalization of ancient tandem duplication genes. The combination of structural biology and comparative genomic analysis revealed that ecgonone methyltransferase, which is responsible for the biosynthesis of characteristic 2-substituted carboxymethyl group in cocaine, evolved from the tandem copies of salicylic acid methyltransferase by the mutations of critical E216 and S153 residues. Overall, we provided strong evidence for the independent origins of serial TA biosynthetic enzymes on the genomic and structural level, underlying the chemotypic convergence of TAs in phylogenetically distant species.


Tropane alkaloids biosynthesis involves an unusual type III polyketide synthase and non-enzymatic condensation.

  • Jian-Ping Huang‎ et al.
  • Nature communications‎
  • 2019‎

The skeleton of tropane alkaloids is derived from ornithine-derived N-methylpyrrolinium and two malonyl-CoA units. The enzymatic mechanism that connects N-methylpyrrolinium and malonyl-CoA units remains unknown. Here, we report the characterization of three pyrrolidine ketide synthases (PYKS), AaPYKS, DsPYKS, and AbPYKS, from three different hyoscyamine- and scopolamine-producing plants. By examining the crystal structure and biochemical activity of AaPYKS, we show that the reaction mechanism involves PYKS-mediated malonyl-CoA condensation to generate a 3-oxo-glutaric acid intermediate that can undergo non-enzymatic Mannich-like condensation with N-methylpyrrolinium to yield the racemic 4-(1-methyl-2-pyrrolidinyl)-3-oxobutanoic acid. This study therefore provides a long sought-after biosynthetic mechanism to explain condensation between N-methylpyrrolinium and acetate units and, more importantly, identifies an unusual plant type III polyketide synthase that can only catalyze one round of malonyl-CoA condensation.


Chromosome level genome assembly of endangered medicinal plant Anisodus tanguticus.

  • Yongli Song‎ et al.
  • Scientific data‎
  • 2024‎

Anisodus tanguticus is a medicinal herb that belongs to the Anisodus genus of the Solanaceae family. This endangered herb is mainly distributed in Qinghai-Tibet Plateau. In this study, we combined the Illumina short-read, Nanopore long-read and high-throughput chromosome conformation capture (Hi-C) sequencing technologies to de novo assemble the A. tanguticus genome. A high-quality chromosomal-level genome assembly was obtained with a genome size of 1.26 Gb and a contig N50 of 25.07 Mb. Of the draft genome sequences, 97.47% were anchored to 24 pseudochromosomes with a scaffold N50 of 51.28 Mb. In addition, 842.14 Mb of transposable elements occupying 66.70% of the genome assembly were identified and 44,252 protein-coding genes were predicted. The genome assembly of A. tanguticus will provide genetic repertoire to understand the adaptation strategy of Anisodus species in the plateau, which will further promote the conservation of endangered A. tanguticus resources.


Implantable porous gelatin microspheres sustained release of bFGF and improved its neuroprotective effect on rats after spinal cord injury.

  • Li Lan‎ et al.
  • PloS one‎
  • 2017‎

In this study, porous gelatin microspheres (GMSs) were constructed to improve the neuroprotective effect of basic fibroblast growth factor (bFGF) on spinal cord injury. GMSs were prepared by a W/O emulsion template, followed by cross-linking, washing and drying. The particle sizes and surface porosity of the blank GMSs were carefully characterized by scan electronic microscopy. The blank GMSs have a mean particle size of 35μm and theirs surface was coarse and porous. bFGF was easily encapsulated inside the bulk GMSs through diffusion along the porous channel. 200μg of bFGF was completely encapsulated in 100mg of GMSs. The bFGF-loaded GMSs displayed a continuous drug release pattern without an obvious burst release over two weeks in vitro. Moreover, the therapeutic effects of bFGF-loaded GMSs were also evaluated in spinal cord injury rat model. After implantation of bFGF-loaded GMSs, the recovery of the motor function of SCI rats were evaluated by behavioral score and foot print experiment. The motor function of SCI rats treated with bFGF-loaded GMSs was more obvious than that treated with free bFGF solution (P<0.05). At the 28th days after treatment, rats were sacrificed and the injured spinal were removed for histopathological and apoptosis examination. Compared with treatment with free bFGF solution, treatment with bFGF-loaded GMSs resulted in a less necrosis, less infiltration of leukocytes, and a reduced the cavity ratio and less apoptotic cells in injured spinal(P<0.01), indicating its better therapeutic effect. Implantable porous GMSs may be a potential carrier to deliver bFGF for therapy of spinal cord injury.


Dimeric Pimprinine Alkaloids From Soil-Derived Streptomyces sp. NEAU-C99.

  • Zhiyin Yu‎ et al.
  • Frontiers in chemistry‎
  • 2020‎

Six new pimprinine alkaloids (1-6), including four dimers, dipimprinines A-D (1-4), and two monomers, (±)-Pimprinol D (5), and pimprinone A (6), along with six known congeners (7-12), were isolated from a soil-derived actinomycete Streptomyces sp. NEAU-C99. Structures of the new compounds were elucidated by extensive spectroscopic analyses, single-crystal X-ray diffractions, and ECD calculations. Dipimprinines A-D (1-4) showed weak cytotoxic activities against five tumor cell lines, including HL-60, SMMC-7721, A-549, MCF-7, and SW-480, with IC50 values ranging from 12.7 to 30.7 μM.


Ultrastructure and morphology of antennal sensilla of the adult diving beetle Cybister japonicus Sharp.

  • Li-Mei Song‎ et al.
  • PloS one‎
  • 2017‎

The morphology and distribution of the antennal sensilla of adult diving beetle Cybister japonicus Sharp (Dytiscidae, Coleoptera), have been examined. Five types of sensilla on the antennae were identified by scanning electron microscope (SEM) and transmission electron microscope (TEM). Sensilla placodea and elongated s. placodea are the most abundant types of sensilla, distributing only on the flagellum. Both these types of sensilla carry multiple pore systems with a typical function as chemoreceptors. Three types of s. coeloconica (Type I-III) were also identified, with the characterization of the pit-in-pit style, and carrying pegs externally different from each other. Our data indicated that both type I and type II of s. coleconica contain two bipolar neurons, while the type III of s. coleconica contains three dendrites in the peg. Two sensory dendrites in the former two sensilla are tightly embedded inside the dendrite sheath, with no space left for sensilla lymph. There are no specific morphological differences in the antennal sensilla observed between males and females, except that the males have longer antennae and more sensilla than the females.


Discovery and biosynthesis of karnamicins as angiotensin converting enzyme inhibitors.

  • Zhiyin Yu‎ et al.
  • Nature communications‎
  • 2023‎

Angiotensin-converting enzyme inhibitors are widely used for treatment of hypertension and related diseases. Here, six karnamicins E1-E6 (1-6), which bear fully substituted hydroxypyridine and thiazole moieties are characterized from the rare actinobacterium Lechevalieria rhizosphaerae NEAU-A2. Through a combination of isotopic labeling, genome mining, and enzymatic characterization studies, the programmed assembly of the fully substituted hydroxypyridine moiety in karnamicin is proposed to be due to sequential operation of a hybrid polyketide synthase-nonribosomal peptide synthetase, two regioselective pyridine ring flavoprotein hydroxylases, and a methyltransferase. Based on AlphaFold protein structures predictions, molecular docking, and site-directed mutagenesis, we find that two pyridine hydroxylases deploy active site residues distinct from other flavoprotein monooxygenases to direct the chemo- and regioselective hydroxylation of the pyridine nucleus. Pleasingly, karnamicins show significant angiotensin-converting enzyme inhibitory activity with IC50 values ranging from 0.24 to 5.81 μM, suggesting their potential use for the treatment of hypertension and related diseases.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: