2024MAY02: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 39 papers

deepBase v2.0: identification, expression, evolution and function of small RNAs, LncRNAs and circular RNAs from deep-sequencing data.

  • Ling-Ling Zheng‎ et al.
  • Nucleic acids research‎
  • 2016‎

Small non-coding RNAs (e.g. miRNAs) and long non-coding RNAs (e.g. lincRNAs and circRNAs) are emerging as key regulators of various cellular processes. However, only a very small fraction of these enigmatic RNAs have been well functionally characterized. In this study, we describe deepBase v2.0 (http://biocenter.sysu.edu.cn/deepBase/), an updated platform, to decode evolution, expression patterns and functions of diverse ncRNAs across 19 species. deepBase v2.0 has been updated to provide the most comprehensive collection of ncRNA-derived small RNAs generated from 588 sRNA-Seq datasets. Moreover, we developed a pipeline named lncSeeker to identify 176 680 high-confidence lncRNAs from 14 species. Temporal and spatial expression patterns of various ncRNAs were profiled. We identified approximately 24 280 primate-specific, 5193 rodent-specific lncRNAs, and 55 highly conserved lncRNA orthologs between human and zebrafish. We annotated 14 867 human circRNAs, 1260 of which are orthologous to mouse circRNAs. By combining expression profiles and functional genomic annotations, we developed lncFunction web-server to predict the function of lncRNAs based on protein-lncRNA co-expression networks. This study is expected to provide considerable resources to facilitate future experimental studies and to uncover ncRNA functions.


Wnt/β-catenin pathway transactivates microRNA-150 that promotes EMT of colorectal cancer cells by suppressing CREB signaling.

  • Yan-Hua Guo‎ et al.
  • Oncotarget‎
  • 2016‎

A hallmark of aberrant activation of the Wnt/β-catenin signaling pathway has been observed in most colorectal cancers (CRC), but little is known about the role of non-coding RNAs regulated by this pathway. Here, we found that miR-150 was the most significantly upregulated microRNA responsive to elevated of Wnt/β-catenin signaling activity in both HCT116 and HEK293T cells. Mechanistically, the β-catenin/LEF1 complex binds to the conserved TCF/LEF1-binding element in the miR-150 promoter and thereby transactivates its expression. Enforced expression of miR-150 in HCT116 cell line transformed cells into a spindle shape with higher migration and invasion activity. miR-150 markedly suppressed the CREB signaling pathway by targeting its core transcription factors CREB1 and EP300. Knockdown of CREB1 or EP300 and knockout of CREB1 by CRISPR/Cas9 phenocopied the epithelial-mesenchymal transition (EMT) observed in HCT116 cells in response to miR-150 overexpression. In summary, our data indicate that miR-150 is a novel Wnt effector that may significantly enhance EMT of CRC cells by targeting the CREB signaling pathway.


RMBase v2.0: deciphering the map of RNA modifications from epitranscriptome sequencing data.

  • Jia-Jia Xuan‎ et al.
  • Nucleic acids research‎
  • 2018‎

More than 100 distinct chemical modifications to RNA have been characterized so far. However, the prevalence, mechanisms and functions of various RNA modifications remain largely unknown. To provide transcriptome-wide landscapes of RNA modifications, we developed the RMBase v2.0 (http://rna.sysu.edu.cn/rmbase/), which is a comprehensive database that integrates epitranscriptome sequencing data for the exploration of post-transcriptional modifications of RNAs and their relationships with miRNA binding events, disease-related single-nucleotide polymorphisms (SNPs) and RNA-binding proteins (RBPs). RMBase v2.0 was expanded with ∼600 datasets and ∼1 397 000 modification sites from 47 studies among 13 species, which represents an approximately 10-fold expansion when compared with the previous release. It contains ∼1 373 000 N6-methyladenosines (m6A), ∼5400 N1-methyladenosines (m1A), ∼9600 pseudouridine (Ψ) modifications, ∼1000 5-methylcytosine (m5C) modifications, ∼5100 2'-O-methylations (2'-O-Me), and ∼2800 modifications of other modification types. Moreover, we built a new module called 'Motif' that provides the visualized logos and position weight matrices (PWMs) of the modification motifs. We also constructed a novel module termed 'modRBP' to study the relationships between RNA modifications and RBPs. Additionally, we developed a novel web-based tool named 'modMetagene' to plot the metagenes of RNA modification along a transcript model. This database will help researchers investigate the potential functions and mechanisms of RNA modifications.


dreamBase: DNA modification, RNA regulation and protein binding of expressed pseudogenes in human health and disease.

  • Ling-Ling Zheng‎ et al.
  • Nucleic acids research‎
  • 2018‎

Although thousands of pseudogenes have been annotated in the human genome, their transcriptional regulation, expression profiles and functional mechanisms are largely unknown. In this study, we developed dreamBase (http://rna.sysu.edu.cn/dreamBase) to facilitate the investigation of DNA modification, RNA regulation and protein binding of potential expressed pseudogenes from multidimensional high-throughput sequencing data. Based on ∼5500 ChIP-seq and DNase-seq datasets, we identified genome-wide binding profiles of various transcription-associated factors around pseudogene loci. By integrating ∼18 000 RNA-seq data, we analysed the expression profiles of pseudogenes and explored their co-expression patterns with their parent genes in 32 cancers and 31 normal tissues. By combining microRNA binding sites, we demonstrated complex post-transcriptional regulation networks involving 275 microRNAs and 1201 pseudogenes. We generated ceRNA networks to illustrate the crosstalk between pseudogenes and their parent genes through competitive binding of microRNAs. In addition, we studied transcriptome-wide interactions between RNA binding proteins (RBPs) and pseudogenes based on 458 CLIP-seq datasets. In conjunction with epitranscriptome sequencing data, we also mapped 1039 RNA modification sites onto 635 pseudogenes. This database will provide insights into the transcriptional regulation, expression, functions and mechanisms of pseudogenes as well as their roles in biological processes and diseases.


The cardiac translational landscape reveals that micropeptides are new players involved in cardiomyocyte hypertrophy.

  • Youchen Yan‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2021‎

Hypertrophic growth of cardiomyocytes is one of the major compensatory responses in the heart after physiological or pathological stimulation. Protein synthesis enhancement, which is mediated by the translation of messenger RNAs, is one of the main features of cardiomyocyte hypertrophy. Although the transcriptome shift caused by cardiac hypertrophy induced by different stimuli has been extensively investigated, translatome dynamics in this cellular process has been less studied. Here, we generated a nucleotide-resolution translatome as well as transcriptome data from isolated primary cardiomyocytes undergoing hypertrophy. More than 10,000 open reading frames (ORFs) were detected from the deep sequencing of ribosome-protected fragments (Ribo-seq), which orchestrated the shift of the translatome in hypertrophied cardiomyocytes. Our data suggest that rather than increase the translational rate of ribosomes, the increased efficiency of protein synthesis in cardiomyocyte hypertrophy was attributable to an increased quantity of ribosomes. In addition, more than 100 uncharacterized short ORFs (sORFs) were detected in long noncoding RNA genes from Ribo-seq with potential of micropeptide coding. In a random test of 15 candidates, the coding potential of 11 sORFs was experimentally supported. Three micropeptides were identified to regulate cardiomyocyte hypertrophy by modulating the activities of oxidative phosphorylation, the calcium signaling pathway, and the mitogen-activated protein kinase (MAPK) pathway. Our study provides a genome-wide overview of the translational controls behind cardiomyocyte hypertrophy and demonstrates an unrecognized role of micropeptides in cardiomyocyte biology.


Efficacy of traditional Chinese medicine for chronic gastritis: A meta-analysis of randomized controlled trials.

  • Zi-Xing Yan‎ et al.
  • Medicine‎
  • 2019‎

To systematically evaluate efficacy of traditional Chinese medicine (TCM) in treating chronic gastritis (CG).


Inhibition of the JNK/MAPK signaling pathway by myogenesis-associated miRNAs is required for skeletal muscle development.

  • Shu-Juan Xie‎ et al.
  • Cell death and differentiation‎
  • 2018‎

Skeletal muscle differentiation is controlled by multiple cell signaling pathways, however, the JNK/MAPK signaling pathway dominating this process has not been fully elucidated. Here, we report that the JNK/MAPK pathway was significantly downregulated in the late stages of myogenesis, and in contrast to P38/MAPK pathway, it negatively regulated skeletal muscle differentiation. Based on the PAR-CLIP-seq analysis, we identified six elevated miRNAs (miR-1a-3p, miR-133a-3p, miR-133b-3p, miR-206-3p, miR-128-3p, miR-351-5p), namely myogenesis-associated miRNAs (mamiRs), negatively controlled the JNK/MAPK pathway by repressing multiple factors for the phosphorylation of the JNK/MAPK pathway, including MEKK1, MEKK2, MKK7, and c-Jun but not JNK protein itself, and as a result, expression of transcriptional factor MyoD and mamiRs were further promoted. Our study revealed a novel double-negative feedback regulatory pattern of cell-specific miRNAs by targeting phosphorylation kinase signaling cascade responsible for skeletal muscle development.


miR-372 and miR-373 enhance the stemness of colorectal cancer cells by repressing differentiation signaling pathways.

  • Lu-Qin Wang‎ et al.
  • Molecular oncology‎
  • 2018‎

miR-372/373, a cluster of stem cell-specific microRNAs transactivated by the Wnt pathway, has been reported to be dysregulated in various cancers, particularly colorectal cancer (CRC); however, the unique role of these microRNAs in cancer remains to be discovered. In the present study, we characterized the upregulation in expression of miR-372/373 in CRC tissues from The Cancer Genome Atlas data, and then showed that overexpression of miR-372/373 enhanced the stemness of CRC cells by enriching the CD26/CD24-positive cell population and promoting self-renewal, chemotherapy resistance and the invasive potential of CRC cells. To clarify the mechanism underlying microRNA-induced stemness, we profiled 45 cell signaling pathways in CRC cells overexpressing miR-372/373 and found that stemness-related pathways, such as Nanog and Hedgehog, were upregulated. Instead, differentiation-related pathways, such as NFκB, MAPK/Erk and VDR, were markedly repressed by miR-372/373. Numerous new targets of miR-372/373 were identified, including SPOP, VDR and SETD7, all of which are factors important for cell differentiation. Furthermore, in contrast to the increase in miR-372/373 expression in CRC tissues, the expression levels of SPOP and VDR mRNA were significantly downregulated in these tissues, indicative of the poor differentiation status of CRC. Taken together, our findings suggest that miR-372/373 enhance CRC cell stemness by repressing the expression of differentiation genes. These results provide new insights for understanding the function and mechanisms of stem cell-specific microRNAs in the development of metastasis and drug resistance in CRC.


Genome-wide analysis of chicken snoRNAs provides unique implications for the evolution of vertebrate snoRNAs.

  • Peng Shao‎ et al.
  • BMC genomics‎
  • 2009‎

Small nucleolar RNAs (snoRNAs) represent one of the largest groups of functionally diverse trans-acting non-protein-coding (npc) RNAs currently known in eukaryotic cells. Chicken snoRNAs have been very poorly characterized when compared to other vertebrate snoRNAs. A genome-wide analysis of chicken snoRNAs is therefore of great importance to further understand the functional evolution of snoRNAs in vertebrates.


ChIPBase v2.0: decoding transcriptional regulatory networks of non-coding RNAs and protein-coding genes from ChIP-seq data.

  • Ke-Ren Zhou‎ et al.
  • Nucleic acids research‎
  • 2017‎

The abnormal transcriptional regulation of non-coding RNAs (ncRNAs) and protein-coding genes (PCGs) is contributed to various biological processes and linked with human diseases, but the underlying mechanisms remain elusive. In this study, we developed ChIPBase v2.0 (http://rna.sysu.edu.cn/chipbase/) to explore the transcriptional regulatory networks of ncRNAs and PCGs. ChIPBase v2.0 has been expanded with ∼10 200 curated ChIP-seq datasets, which represent about 20 times expansion when comparing to the previous released version. We identified thousands of binding motif matrices and their binding sites from ChIP-seq data of DNA-binding proteins and predicted millions of transcriptional regulatory relationships between transcription factors (TFs) and genes. We constructed 'Regulator' module to predict hundreds of TFs and histone modifications that were involved in or affected transcription of ncRNAs and PCGs. Moreover, we built a web-based tool, Co-Expression, to explore the co-expression patterns between DNA-binding proteins and various types of genes by integrating the gene expression profiles of ∼10 000 tumor samples and ∼9100 normal tissues and cell lines. ChIPBase also provides a ChIP-Function tool and a genome browser to predict functions of diverse genes and visualize various ChIP-seq data. This study will greatly expand our understanding of the transcriptional regulations of ncRNAs and PCGs.


tModBase: deciphering the landscape of tRNA modifications and their dynamic changes from epitranscriptome data.

  • Hao-Tian Lei‎ et al.
  • Nucleic acids research‎
  • 2023‎

tRNA molecules contain dense, abundant modifications that affect tRNA structure, stability, mRNA decoding and tsRNA formation. tRNA modifications and related enzymes are responsive to environmental cues and are associated with a range of physiological and pathological processes. However, there is a lack of resources that can be used to mine and analyse these dynamically changing tRNA modifications. In this study, we established tModBase (https://www.tmodbase.com/) for deciphering the landscape of tRNA modification profiles from epitranscriptome data. We analysed 103 datasets generated with second- and third-generation sequencing technologies and illustrated the misincorporation and termination signals of tRNA modification sites in ten species. We thus systematically demonstrate the modification profiles across different tissues/cell lines and summarize the characteristics of tRNA-associated human diseases. By integrating transcriptome data from 32 cancers, we developed novel tools for analysing the relationships between tRNA modifications and RNA modification enzymes, the expression of 1442 tRNA-derived small RNAs (tsRNAs), and 654 DNA variations. Our database will provide new insights into the features of tRNA modifications and the biological pathways in which they participate.


MtiBase: a database for decoding microRNA target sites located within CDS and 5'UTR regions from CLIP-Seq and expression profile datasets.

  • Zhi-Wei Guo‎ et al.
  • Database : the journal of biological databases and curation‎
  • 2015‎

MicroRNAs (miRNAs) play an important role in the regulation of gene expression. Previous studies on miRNA functions mainly focused on their target sites in the 3' untranslated regions (UTRs) of mRNAs. However, increasing evidence has revealed that miRNAs can also induce mRNA degradation and mediate translational repression via complementary interactions with the coding sequence (CDS) and 5'UTR of mRNAs. In this study, we developed a novel database, MtiBase, to facilitate the comprehensive exploration of CDS- and 5'UTR-located miRNA target sites identified from cross-linking immunoprecipitation sequencing (CLIP-Seq) datasets and to uncover their regulatory effects on mRNA stability and translation from expression profile datasets. By integrating 61 Argonaute protein-binding CLIP-Seq datasets and miRNA target sites predicted by five commonly used programs, we identified approximately 4 400 000 CDS-located and 470 000 5'UTR-located miRNA target sites. Moreover, we evaluated the regulatory effects of miRNAs on mRNA stability and translation using the data from 222 gene expression profiles, and 28 ribosome-protected fragment sequencing, and six pulsed stable isotope labeling with amino acids in culture. Finally, the effects of SNPs on the functions of miRNA target sites were systematically evaluated. Our study provides a useful tool for functional studies of miRNAs in regulating physiology and pathology. Database URL: http://mtibase.sysu.edu.cn.


tRF2Cancer: A web server to detect tRNA-derived small RNA fragments (tRFs) and their expression in multiple cancers.

  • Ling-Ling Zheng‎ et al.
  • Nucleic acids research‎
  • 2016‎

tRNA-derived small RNA fragments (tRFs) are one class of small non-coding RNAs derived from transfer RNAs (tRNAs). tRFs play important roles in cellular processes and are involved in multiple cancers. High-throughput small RNA (sRNA) sequencing experiments can detect all the cellular expressed sRNAs, including tRFs. However, distinguishing genuine tRFs from RNA fragments generated by random degradation remains a major challenge. In this study, we developed an integrated web-based computing system, tRF2Cancer, to accurately identify tRFs from sRNA deep-sequencing data and evaluate their expression in multiple cancers. The binomial test was introduced to evaluate whether reads from a small RNA-seq data set represent tRFs or degraded fragments. A classification method was then used to annotate the types of tRFs based on their sites of origin in pre-tRNA or mature tRNA. We applied the pipeline to analyze 10 991 data sets from 32 types of cancers and identified thousands of expressed tRFs. A tool called 'tRFinCancer' was developed to facilitate the users to inspect the expression of tRFs across different types of cancers. Another tool called 'tRFBrowser' shows both the sites of origin and the distribution of chemical modification sites in tRFs on their source tRNA. The tRF2Cancer web server is available at http://rna.sysu.edu.cn/tRFfinder/.


Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis.

  • Lan-Tao Gou‎ et al.
  • Cell research‎
  • 2014‎

Spermatogenesis in mammals is characterized by two waves of piRNA expression: one corresponds to classic piRNAs responsible for silencing retrotransponsons and the second wave is predominantly derived from nontransposon intergenic regions in pachytene spermatocytes, but the function of these pachytene piRNAs is largely unknown. Here, we report the involvement of pachytene piRNAs in instructing massive mRNA elimination in mouse elongating spermatids (ES). We demonstrate that a piRNA-induced silencing complex (pi-RISC) containing murine PIWI (MIWI) and deadenylase CAF1 is selectively assembled in ES, which is responsible for inducing mRNA deadenylation and decay via a mechanism that resembles the action of miRNAs in somatic cells. Such a highly orchestrated program appears to take full advantage of the enormous repertoire of diversified targeting capacity of pachytene piRNAs derived from nontransposon intergenic regions. These findings suggest that pachytene piRNAs are responsible for inactivating vast cellular programs in preparation for sperm production from ES.


Comparative transcriptome analysis of small noncoding RNAs in different stages of Trypanosoma brucei.

  • Ling-Ling Zheng‎ et al.
  • RNA (New York, N.Y.)‎
  • 2013‎

Trypanosoma brucei, a pathogen of human and domestic animals, is an early evolved parasitic protozoan with a complex life cycle. Most genes of this parasite are post-transcriptionally regulated. However, the mechanisms and the molecules involved remain largely unknown. We have deep-sequenced the small RNAs of two life stages of this parasite--the bloodstream form and the procyclic form. Our results show that the small RNAs of T. brucei could derive from multiple sources, including NATs (natural antisense transcripts), tRNAs, and rRNAs. Most of these small RNAs in the two stages were found to share uniform characteristics. However, our results demonstrate that their variety and expression show significant differences between different stages, indicating possible functional differentiation. Dicer-knockdown evidence further proved that some of the small interfering RNAs (siRNAs) could regulate the expression of genes. Based on the genome-wide analysis of the small RNAs in the two stages of T. brucei, our results not only provide evidence to study their differentiation but also shed light on questions regarding the origins and evolution of small RNA-based mechanisms in early eukaryotes.


Rapid birth-and-death evolution of imprinted snoRNAs in the Prader-Willi syndrome locus: implications for neural development in Euarchontoglires.

  • Yi-Jun Zhang‎ et al.
  • PloS one‎
  • 2014‎

Imprinted small nucleolar RNAs (snoRNAs) are only found in eutherian genomes and closely related to brain functions. A complex human neurological disease, Prader-Willi syndrome (PWS), is primarily attributed to the deletion of imprinted snoRNAs in chromosome 15q11-q13. Here we investigated the snoRNA repertoires in the PWS locus of 12 mammalian genomes and their evolution processes. A total of 613 imprinted snoRNAs were identified in the PWS homologous loci and the gene number was highly variable across lineages, with a peak in Euarchontoglires. Lineage-specific gene gain and loss events account for most extant genes of the HBII-52 (SNORD115) and the HBII-85 (SNORD116) gene family, and remarkable high gene-birth rates were observed in the primates and the rodents. Meanwhile, rapid sequence substitution occurred only in imprinted snoRNA genes, rather than their flanking sequences or the protein-coding genes located in the same imprinted locus. Strong selective constraints on the functional elements of these imprinted snoRNAs further suggest that they are subjected to birth-and-death evolution. Our data suggest that the regulatory role of HBII-52 on 5-HT2CR pre-mRNA might originate in the Euarchontoglires through adaptive process. We propose that the rapid evolution of PWS-related imprinted snoRNAs has contributed to the neural development of Euarchontoglires.


deepBase: a database for deeply annotating and mining deep sequencing data.

  • Jian-Hua Yang‎ et al.
  • Nucleic acids research‎
  • 2010‎

Advances in high-throughput next-generation sequencing technology have reshaped the transcriptomic research landscape. However, exploration of these massive data remains a daunting challenge. In this study, we describe a novel database, deepBase, which we have developed to facilitate the comprehensive annotation and discovery of small RNAs from transcriptomic data. The current release of deepBase contains deep sequencing data from 185 small RNA libraries from diverse tissues and cell lines of seven organisms: human, mouse, chicken, Ciona intestinalis, Drosophila melanogaster, Caenhorhabditis elegans and Arabidopsis thaliana. By analyzing approximately 14.6 million unique reads that perfectly mapped to more than 284 million genomic loci, we annotated and identified approximately 380,000 unique ncRNA-associated small RNAs (nasRNAs), approximately 1.5 million unique promoter-associated small RNAs (pasRNAs), approximately 4.0 million unique exon-associated small RNAs (easRNAs) and approximately 6 million unique repeat-associated small RNAs (rasRNAs). Furthermore, 2038 miRNA and 1889 snoRNA candidates were predicted by miRDeep and snoSeeker. All of the mapped reads can be grouped into about 1.2 million RNA clusters. For the purpose of comparative analysis, deepBase provides an integrative, interactive and versatile display. A convenient search option, related publications and other useful information are also provided for further investigation. deepBase is available at: http://deepbase.sysu.edu.cn/.


Genome-wide analysis of small RNA and novel MicroRNA discovery in human acute lymphoblastic leukemia based on extensive sequencing approach.

  • Hua Zhang‎ et al.
  • PloS one‎
  • 2009‎

MicroRNAs (miRNAs) have been proved to play an important role in various cellular processes and function as tumor suppressors or oncogenes in cancers including leukemia. The identification of a large number of novel miRNAs and other small regulatory RNAs will provide valuable insights into the roles they play in tumorgenesis.


snoSeeker: an advanced computational package for screening of guide and orphan snoRNA genes in the human genome.

  • Jian-Hua Yang‎ et al.
  • Nucleic acids research‎
  • 2006‎

Small nucleolar RNAs (snoRNAs) represent an abundant group of non-coding RNAs in eukaryotes. They can be divided into guide and orphan snoRNAs according to the presence or absence of antisense sequence to rRNAs or snRNAs. Current snoRNA-searching programs, which are essentially based on sequence complementarity to rRNAs or snRNAs, exist only for the screening of guide snoRNAs. In this study, we have developed an advanced computational package, snoSeeker, which includes CDseeker and ACAseeker programs, for the highly efficient and specific screening of both guide and orphan snoRNA genes in mammalian genomes. By using these programs, we have systematically scanned four human-mammal whole-genome alignment (WGA) sequences and identified 54 novel candidates including 26 orphan candidates as well as 266 known snoRNA genes. Eighteen novel snoRNAs were further experimentally confirmed with four snoRNAs exhibiting a tissue-specific or restricted expression pattern. The results of this study provide the most comprehensive listing of two families of snoRNA genes in the human genome till date.


tsRFun: a comprehensive platform for decoding human tsRNA expression, functions and prognostic value by high-throughput small RNA-Seq and CLIP-Seq data.

  • Jun-Hao Wang‎ et al.
  • Nucleic acids research‎
  • 2022‎

tRNA-derived small RNA (tsRNA), a novel type of regulatory small noncoding RNA, plays an important role in physiological and pathological processes. However, the understanding of the functional mechanism of tsRNAs in cells and their role in the occurrence and development of diseases is limited. Here, we integrated multiomics data such as transcriptome, epitranscriptome, and targetome data, and developed novel computer tools to establish tsRFun, a comprehensive platform to facilitate tsRNA research (http://rna.sysu.edu.cn/tsRFun/ or http://biomed.nscc-gz.cn/DB/tsRFun/). tsRFun evaluated tsRNA expression profiles and the prognostic value of tsRNAs across 32 types of cancers, identified tsRNA target molecules utilizing high-throughput CLASH/CLEAR or CLIP sequencing data, and constructed the interaction networks among tsRNAs, microRNAs, and mRNAs. In addition to its data presentation capabilities, tsRFun offers multiple real-time online tools for tsRNA identification, target prediction, and functional enrichment analysis. In summary, tsRFun provides a valuable data resource and multiple analysis tools for tsRNA investigation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: