2024MAY10: Our hosting provider is experiencing intermittent networking issues. We apologize for any inconvenience.

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,112 papers

ZYG11A serves as an oncogene in non-small cell lung cancer and influences CCNE1 expression.

  • Xin Wang‎ et al.
  • Oncotarget‎
  • 2016‎

By analyzing The Cancer Genome Atlas (TCGA) database, we identified ZYG11A as a potential oncogene. We determined the expression of ZYG11A in NSCLC tissues and explored its clinical significance. And also evaluated the effects of ZYG11A on NSCLC cell proliferation, migration, and invasion both in vitro and in vivo. Our results show that ZYG11A is hyper-expressed in NSCLC tissues compared to adjacent normal tissues, and increased expression of ZYG11A is associated with a poor prognosis (HR: 2.489, 95%CI: 1.248-4.963, p = 0.010). ZYG11A knockdown induces cell cycle arrest and inhibits proliferation, migration, and invasion of NSCLC cells. ZYG11A knockdown also results in decreased expression of CCNE1. Over-expression of CCNE1 in cells with ZYG11A knockdown restores their oncogenic activities. Our data suggest that ZYG11A may serve as a novel oncogene promoting tumorigenicity of NSCLC cells by inducing cell cycle alterations and increasing CCNE1 expression.


Convergent and divergent intranetwork and internetwork connectivity patterns in patients with remitted late-life depression and amnestic mild cognitive impairment.

  • Jiu Chen‎ et al.
  • Cortex; a journal devoted to the study of the nervous system and behavior‎
  • 2016‎

Both remitted late-life depression (rLLD) and amnesiac mild cognitive impairment (aMCI) alter brain functions in specific regions of the brain. They are also disconnection syndromes that are associated with a high risk of developing Alzheimer's disease (AD).


Elongation Factor Tu and Heat Shock Protein 70 Are Membrane-Associated Proteins from Mycoplasma ovipneumoniae Capable of Inducing Strong Immune Response in Mice.

  • Fei Jiang‎ et al.
  • PloS one‎
  • 2016‎

Chronic non-progressive pneumonia, a disease that has become a worldwide epidemic has caused considerable loss to sheep industry. Mycoplasma ovipneumoniae (M. ovipneumoniae) is the causative agent of interstitial pneumonia in sheep, goat and bighorn. We here have identified by immunogold and immunoblotting that elongation factor Tu (EF-Tu) and heat shock protein 70 (HSP 70) are membrane-associated proteins on M. ovipneumonaiea. We have evaluated the humoral and cellular immune responses in vivo by immunizing BALB/c mice with both purified recombinant proteins rEF-Tu and rHSP70. The sera of both rEF-Tu and rHSP70 treated BALB/c mice demonstrated increased levels of IgG, IFN-γ, TNF-α, IL-12(p70), IL-4, IL-5 and IL-6. In addition, ELISPOT assay showed significant increase in IFN-γ+ secreting lymphocytes in the rHSP70 group when compared to other groups. Collectively our study reveals that rHSP70 induces a significantly better cellular immune response in mice, and may act as a Th1 cytokine-like adjuvant in immune response induction. Finally, growth inhibition test (GIT) of M. ovipneumoniae strain Y98 showed that sera from rHSP70 or rEF-Tu-immunized mice inhibited in vitro growth of M. ovipneumoniae. Our data strongly suggest that EF-Tu and HSP70 of M. ovipneumoniae are membrane-associated proteins capable of inducing antibody production, and cytokine secretion. Therefore, these two proteins may be potential candidates for vaccine development against M. ovipneumoniae infection in sheep.


CRISPR/Cas9-mediated knockout of factors in non-homologous end joining pathway enhances gene targeting in silkworm cells.

  • Li Zhu‎ et al.
  • Scientific reports‎
  • 2015‎

Gene targeting can be achieved by precise genetic modifications through homology-directed repair (HDR) after DNA breaks introduced by genome editing tools such as CRISPR/Cas9 system. The most common form of HDR is homologous recombination (HR). Binding to the DNA breaks by HR factors is thought to compete with non-homologous end joining (NHEJ), an alternative DNA repair pathway. Here, we knocked out the factors in NHEJ by CRISPR/Cas9 system in silkworm cells, so that increased the activities of HR up to 7-fold. Also efficient HR-mediated genome editing events occurred between the chromosomal BmTUDOR-SN gene and donor DNA sequences with an EGFP gene in the middle of two homologous arms for the target gene. Utilizing the NHEJ-deficient silkworm cells, we found that homologous arms as short as 100 bp in donor DNA could be designed to perform precise genome editing. These studies should greatly accelerate investigations into genome editing of silkworm.


Gray Matter Loss and Related Functional Connectivity Alterations in A Chinese Family With Benign Adult Familial Myoclonic Epilepsy.

  • Ling-Li Zeng‎ et al.
  • Medicine‎
  • 2015‎

Benign adult familial myoclonic epilepsy (BAFME) is a non-progressive monogenic epilepsy syndrome. So far, the structural and functional brain reorganizations in BAFME remain uncharacterized. This study aims to investigate gray matter atrophy and related functional connectivity alterations in patients with BAFME using magnetic resonance imaging (MRI).Eleven BAFME patients from a Chinese pedigree and 15 matched healthy controls were enrolled in the study. Optimized voxel-based morphometric and resting-state functional MRI approaches were performed to measure gray matter atrophy and related functional connectivity, respectively. The Trail-Making Test-part A and part B, Digit Symbol Test (DST), and Verbal Fluency Test (VFT) were carried out to evaluate attention and executive functions.The BAFME patients exhibited significant gray matter loss in the right hippocampus, right temporal pole, left orbitofrontal cortex, and left dorsolateral prefrontal cortex. With these regions selected as seeds, the voxel-wise functional connectivity analysis revealed that the right hippocampus showed significantly enhanced connectivity with the right inferior parietal lobule, bilateral middle cingulate cortex, left precuneus, and left precentral gyrus. Moreover, the BAFME patients showed significant lower scores in DST and VFT tests compared with the healthy controls. The gray matter densities of the right hippocampus, right temporal pole, and left orbitofrontal cortex were significantly positively correlated with the DST scores. In addition, the gray matter density of the right temporal pole was significantly positively correlated with the VFT scores, and the gray matter density of the right hippocampus was significantly negatively correlated with the duration of illness in the patients.The current study demonstrates gray matter loss and related functional connectivity alterations in the BAFME patients, perhaps underlying deficits in attention and executive functions in the BAFME.


Potential pitfalls of mass spectrometry to uncover mutations in childhood soft tissue sarcoma: A report from the Children's Oncology Group.

  • Lin Xu‎ et al.
  • Scientific reports‎
  • 2016‎

Mass spectrometry-based methods have been widely applied - often as the sole method - to detect mutations in human cancer specimens. We applied this approach to 52 childhood soft tissue sarcoma specimens in an attempt to identify potentially actionable mutations. This analysis revealed that 25% of the specimens harbored high-confidence calls for mutated alleles, including a mutation encoding FLT3(I836M) that was called in four cases. Given the surprisingly high frequency and unusual nature of some of the mutant alleles, we carried out ultra-deep next generation sequencing to confirm them. We confirmed only three mutations, which encoded NRAS(A18T), JAK3(V722I) and MET(R970C) in three specimens. Beyond highlighting those mutations, our findings demonstrate potential pitfalls of primarily utilizing a mass spectrometry-based approach to broadly screen for DNA sequence variants in archived, clinical-grade tumor specimens. Duplicate mass spectrometric analyses and confirmatory next generation sequencing can help diminish false positive calls, but this does not ameliorate potential false negatives due in part to evaluating a limited panel of sequence variants.


R-Phycoerythrin Induces SGC-7901 Apoptosis by Arresting Cell Cycle at S Phase.

  • Huixin Tan‎ et al.
  • Marine drugs‎
  • 2016‎

R-Phycoerythrin (R-PE), one of the chemical constituents of red algae, could produce singlet oxygen upon excitation with the appropriate radiation and possibly be used in photodynamic therapy (PDT) for cancer. Documents reported that R-PE could inhibit cell proliferation in HepG2 and A549 cells, which was significative for cancer therapy. This is due to the fact that R-PE could kill cancer cells directly as well as by PDT. However, little is known about the cytotoxicity of R-PE to the SGC-7901 cell. In this study, it has been found that R-PE could inhibit SGC-7901 proliferation and induce cell apoptosis, which was achieved by arresting the SGC-7901 cell at S phase. CyclinA, CDK2 and CDC25A are proteins associated with the S phase, and it was found that R-PE could increase the expression of cyclin A protein and decrease the expression of CDK2 and CDC25A proteins. Thus, it was concluded that R-PE reduced the CDK2 protein activated through decreasing the CDC25A factor, which reduced the formation of Cyclin-CDK complex. The reduction of Cyclin-CDK complex made the SGC-7901 cells arrest at the S phase. Therefore, R-PE induced apoptosis by arresting the SGC-7901 cell at S phase was successful, which was achieved by the expression of the CDC25A protein, which reduced the CDK2 protein actived and the formation of Cyclin-CDK complex.


Identification of a stable major-effect QTL (Parth 2.1) controlling parthenocarpy in cucumber and associated candidate gene analysis via whole genome re-sequencing.

  • Zhe Wu‎ et al.
  • BMC plant biology‎
  • 2016‎

Parthenocarpy is an important trait for yield and quality in many plants. But due to its complex interactions with genetic and physiological factors, it has not been adequately understood and applied to breeding and production. Finding novel and effective quantitative trait loci (QTLs) is a critical step towards understanding its genetic mechanism. Cucumber (Cucumis sativus L.) is a typical parthenocarpic plant but the QTLs controlling parthenocarpy in cucumber were not mapped on chromosomes, and the linked markers were neither user-friendly nor confirmed by previous studies. Hence, we conducted a two-season QTL study of parthenocarpy based on the cucumber genome with 145 F2:3 families derived from a cross between EC1 (a parthenocarpic inbred line) and 8419 s-1 (a non-parthenocarpic inbred line) in order to map novel QTLs. Whole genome re-sequencing was also performed both to develop effective linked markers and to predict candidate genes.


Bcl11a Deficiency Leads to Hematopoietic Stem Cell Defects with an Aging-like Phenotype.

  • Sidinh Luc‎ et al.
  • Cell reports‎
  • 2016‎

B cell CLL/lymphoma 11A (BCL11A) is a transcription factor and regulator of hemoglobin switching that has emerged as a promising therapeutic target for sickle cell disease and thalassemia. In the hematopoietic system, BCL11A is required for B lymphopoiesis, yet its role in other hematopoietic cells, especially hematopoietic stem cells (HSCs) remains elusive. The extensive expression of BCL11A in hematopoiesis implicates context-dependent roles, highlighting the importance of fully characterizing its function as part of ongoing efforts for stem cell therapy and regenerative medicine. Here, we demonstrate that BCL11A is indispensable for normal HSC function. Bcl11a deficiency results in HSC defects, typically observed in the aging hematopoietic system. We find that downregulation of cyclin-dependent kinase 6 (Cdk6), and the ensuing cell-cycle delay, correlate with HSC dysfunction. Our studies define a mechanism for BCL11A in regulation of HSC function and have important implications for the design of therapeutic approaches to targeting BCL11A.


Cypermethrin Induces Macrophages Death through Cell Cycle Arrest and Oxidative Stress-Mediated JNK/ERK Signaling Regulated Apoptosis.

  • Fang Huang‎ et al.
  • International journal of molecular sciences‎
  • 2016‎

Cypermethrin is one of the most highly effective synthetic pyrethroid insecticides. The toxicity of cypermethrin to the reproductive and nervous systems has been well studied. However, little is known about the toxic effect of cypermethrin on immune cells such as macrophages. Here, we investigated the cytotoxicity of cypermethrin on macrophages and the underlying molecular mechanisms. We found that cypermethrin reduced cell viability and induced apoptosis in RAW 264.7 cells. Cypermethrin also increased reactive oxygen species (ROS) production and DNA damage in a dose-dependent manner. Moreover, cypermethrin-induced G1 cell cycle arrest was associated with an enhanced expression of p21, wild-type p53, and down-regulation of cyclin D1, cyclin E and CDK4. In addition, cypermethrin treatment activated MAPK signal pathways by inducing c-Jun N-terminal kinase (JNK) and extracellular regulated protein kinases 1/2 ERK1/2 phosphorylation, and increased the cleaved poly ADP-ribose polymerase (PARP). Further, pretreatment with antioxidant N-acetylcysteine (NAC) effectively abrogated cypermethrin-induced cell cytotoxicity, G1 cell cycle arrest, DNA damage, PARP activity, and JNK and ERK1/2 activation. The specific JNK inhibitor (SP600125) and ERK1/2 inhibitor (PD98059) effectively reversed the phosphorylation level of JNK and ERK1/2, and attenuated the apoptosis. Taken together, these data suggested that cypermethrin caused immune cell death via inducing cell cycle arrest and apoptosis regulated by ROS-mediated JNK/ERK pathway.


Circulating PGRN is significantly associated with systemic insulin sensitivity and autophagic activity in metabolic syndrome.

  • Huixia Li‎ et al.
  • Endocrinology‎
  • 2014‎

Progranulin (PGRN) is a secreted protein that has recently emerged as an important regulatory adipokine of glucose metabolism and insulin sensitivity. We report here that serum PGRN concentrations were significantly higher in patients with metabolic syndrome (MS) than in subjects without MS and correlated positively with body mass index, waist circumference, fasting insulin, fasting plasma glucose, glycated hemoglobin A1c, triglyceride, and homeostasis model assessment of insulin resistance, and were inversely related to high-density lipoprotein cholesterol and homeostasis model assessment of β cell function. Subgroup analysis in 32 subjects showed that elevated expression levels of PGRN were positively correlated with increased autophagy markers LC3 and Atg7 proteins in omental adipose tissue of subjects with MS. Consistent with these findings, the enhanced PGRN levels were also observed in multiple insulin-resistant cellular models, whereas PGRN-deficient adipocytes were more susceptible to insulin action and refractory to tunicamycin-induced autophagic disorders. PGRN remarkably attenuated insulin sensitivity, increased autophagic activity, and triggered endoplasmic reticulum (ER) stress in cultured human adipocytes, whereas these effects were nullified by reduction of ER stress with phenylbutyric acid chemical chaperone treatment. In addition, PGRN-induced ER stress and impaired insulin sensitivity were improved in TNFR1(-/-) cells, indicating a causative role of TNF receptor in the action of PGRN. Collectively, our findings suggest that circulating PGRN is significantly associated with systemic insulin sensitivity and autophagic activity in adipose tissue and support the notion that PGRN functions as a potential link between chronic inflammation and insulin resistance.


Pharmacological postconditioning with lactic acid and hydrogen rich saline alleviates myocardial reperfusion injury in rats.

  • Guoming Zhang‎ et al.
  • Scientific reports‎
  • 2015‎

This study investigated whether pharmacological postconditioning with lactic acid and hydrogen rich saline can provide benefits similar to that of mechanical postconditioning. To our knowledge, this is the first therapeutic study to investigate the co-administration of lactic acid and hydrogen. SD rats were randomly divided into 6 groups: Sham, R/I, M-Post, Lac, Hyd, and Lac + Hyd. The left coronary artery was occluded for 45 min. Blood was withdrawn from the right atrium to measure pH. The rats were sacrificed at different time points to measure mitochondrial absorbance, infarct size, serum markers and apoptotic index. Rats in Lac + Hyd group had similar blood pH and ROS levels when compared to the M-Post group. Additionally, the infarct area was reduced to the same extent in Lac + Hyd and M-Post groups with a similar trends observed for serum markers of myocardial injury and apoptotic index. Although the level of P-ERK in Lac + Hyd group was lower, P-p38/JNK, TNFα, Caspase-8, mitochondrial absorbance and Cyt-c were all similar in Lac + Hyd and M-Post groups. The Lac and Hyd groups were able to partially mimic this protective role. These data suggested that pharmacological postconditioning with lactic acid and hydrogen rich saline nearly replicates the benefits of mechanical postconditioning.


Opioid addiction and withdrawal differentially drive long-term depression of inhibitory synaptic transmission in the hippocampus.

  • Huili Han‎ et al.
  • Scientific reports‎
  • 2015‎

Addictive behavior is increasingly accepted as a drug-associated pathological memory in which the hippocampus is profoundly engaged. It has been well documented that adaptations of synaptic plasticity of excitatory transmission in the hippocampus may contribute to opioid addiction. However, it remains unknown whether and how adaptive changes of synaptic plasticity of inhibitory transmission in the hippocampus occurs during opioid abuse. Here, we reported that a single in vivo morphine exposure (SM) did not affect inhibitory long-term depression (I-LTD) in the hippocampus, compared with saline control; while repeated morphine exposure (RM) abolished this I-LTD. Interestingly, opioid withdrawal for 3-5 days after repeated (RMW), but not a single morphine exposure (SMW), largely enhanced I-LTD. More importantly, the I-LTD in single morphine treatment is dependent on presynaptic mechanism since it can be blocked by AM251, a selective cannabinoid receptor 1 antagonist. While the large I-LTD in RMW group is dependent on combinatorial presynaptic and postsynaptic mechanisms since it can be blocked by co-application of AM251 and L-type calcium channel blocker LaCl3. Thus, these results demonstrate that opioid use and withdrawal drive the dynamics of presynaptic and postsynaptic I-LTD expression in the hippocampus that may contribute to the persistent behavioral changes during opioid abuse.


Filovirus RNA in Fruit Bats, China.

  • Biao He‎ et al.
  • Emerging infectious diseases‎
  • 2015‎

No abstract available


PRC2 Is Required to Maintain Expression of the Maternal Gtl2-Rian-Mirg Locus by Preventing De Novo DNA Methylation in Mouse Embryonic Stem Cells.

  • Partha Pratim Das‎ et al.
  • Cell reports‎
  • 2015‎

Polycomb Repressive Complex 2 (PRC2) function and DNA methylation (DNAme) are typically correlated with gene repression. Here, we show that PRC2 is required to maintain expression of maternal microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) from the Gtl2-Rian-Mirg locus, which is essential for full pluripotency of iPSCs. In the absence of PRC2, the entire locus becomes transcriptionally repressed due to gain of DNAme at the intergenic differentially methylated regions (IG-DMRs). Furthermore, we demonstrate that the IG-DMR serves as an enhancer of the maternal Gtl2-Rian-Mirg locus. Further analysis reveals that PRC2 interacts physically with Dnmt3 methyltransferases and reduces recruitment to and subsequent DNAme at the IG-DMR, thereby allowing for proper expression of the maternal Gtl2-Rian-Mirg locus. Our observations are consistent with a mechanism through which PRC2 counteracts the action of Dnmt3 methyltransferases at an imprinted locus required for full pluripotency.


SHOEBOX Modulates Root Meristem Size in Rice through Dose-Dependent Effects of Gibberellins on Cell Elongation and Proliferation.

  • Jintao Li‎ et al.
  • PLoS genetics‎
  • 2015‎

Little is known about how the size of meristem cells is regulated and whether it participates in the control of meristem size in plants. Here, we report our findings on shoebox (shb), a mild gibberellin (GA) deficient rice mutant that has a short root meristem size. Quantitative analysis of cortical cell length and number indicates that shb has shorter, rather than fewer, cells in the root meristem until around the fifth day after sowing, from which the number of cortical cells is also reduced. These defects can be either corrected by exogenous application of bioactive GA or induced in wild-type roots by a dose-dependent inhibitory effect of paclobutrazol on GA biosynthesis, suggesting that GA deficiency is the primary cause of shb mutant phenotypes. SHB encodes an AP2/ERF transcription factor that directly activates transcription of the GA biosynthesis gene KS1. Thus, root meristem size in rice is modulated by SHB-mediated GA biosynthesis that regulates the elongation and proliferation of meristem cells in a developmental stage-specific manner.


LINGO-1 antibody ameliorates myelin impairment and spatial memory deficits in experimental autoimmune encephalomyelitis mice.

  • Jun-Jun Sun‎ et al.
  • Scientific reports‎
  • 2015‎

More than 50% of multiple sclerosis patients develop cognitive impairment. However, the underlying mechanisms are still unclear, and there is no effective treatment. LINGO-1 (LRR and Ig domain containing NOGO receptor interacting protein 1) has been identified as an inhibitor of oligodendrocyte differentiation and myelination. Using the experimental autoimmune encephalomyelitis (EAE) mouse model, we assessed cognitive function at early and late stages of EAE, determined brain expression of myelin basic protein (MBP) and investigated whether the LINGO-1 antibody could restore deficits in learning and memory and ameliorate any loss of MBP. We found that deficits in learning and memory occurred in late EAE and identified decreased expression of MBP in the parahippocampal cortex (PHC) and fimbria-fornix. Moreover, the LINGO-1 antibody significantly improved learning and memory in EAE and partially restored MBP in PHC. Furthermore, the LINGO-1 antibody activated the AKT/mTOR signaling pathway regulating myelin growth. Our results suggest that demyelination in the PHC and fimbria-fornix might contribute to cognitive deficits and the LINGO-1 antibody could ameliorate these deficits by promoting myelin growth in the PHC. Our research demonstrates that LINGO-1 antagonism may be an effective approach to the treatment of the cognitive impairment of multiple sclerosis patients.


Potentially functional polymorphisms in PAK1 are associated with risk of lung cancer in a Chinese population.

  • Mingfeng Zheng‎ et al.
  • Cancer medicine‎
  • 2015‎

P21-activated kinase 1(PAK1) plays an important role in the regulation of cell morphogenesis, motility, mitosis, and angiogenesis and has been implicated with tumorigenesis and tumor progression. We hypothesized that functional polymorphisms in PAK1 gene may modify the risk of lung cancer. We screened four potentially functional polymorphisms (rs2154754, rs3015993, rs7109645, and rs2844337) in PAK1 gene and evaluated the association between the genetic variants and lung cancer risk in a case-control study including 1341 lung cancer cases and 1982 cancer-free controls in a Chinese population. We found that variant allele of rs2154754 was significantly associated with a decreased risk of lung cancer (OR = 0.85, 95% CI: 0.77-0.95, P = 0.004), meanwhile the result of rs3015993 was marginal (OR = 0.90, 95%CI: 0.81-1.00, P = 0.044). After multiple comparisons, rs2154754 was still significantly associated with the lung cancer risk (P < 0.0125 for Bonferroni correction). We also detected a significant interaction between rs2154754 genotypes and smoking levels on lung cancer risk (P = 0.042). Combined analysis of these two polymorphisms showed a significant allele-dosage association between the number of protective alleles and reduced risk of lung cancer (Ptrend = 0.008). These findings indicate that genetic variants in PAK1 gene may contribute to susceptibility to lung cancer in the Chinese population.


Purification and partial characterization of a new antitumor protein from Tegillarca granosa.

  • Shuangshuang Lv‎ et al.
  • Marine drugs‎
  • 2015‎

A new protein, coded as D2-3, was obtained from the marine organism Tegillarca granosa L. by anion exchange and hydrophobic chromatography. The purity of D2-3 was over 99.0% as measured by RP-HPLC. Its molecular weight was shown to be 20.320 kDa by ESI-MS/MS, and the isoelectric point of D2-3 was 4.70. The antitumor activity of D2-3 against four human tumor cell lines was measured by MTT assay. The conformational structure of D2-3 was further characterized by UV-vis, FT-IR and CD spectroscopy. Partial amino acid sequences of D2-3 were determined to be LMMTDVEESR, SSHMLSECRRK, KNGRNVDISHKDKG, SSDPTLMDPDDTNKDR, SSDKNTCSKTEYYTR and SSETMPYDVLDTNEMR via MALDI-TOF-MS and de novo sequencing.


Autoantibodies Affect Brain Density Reduction in Nonneuropsychiatric Systemic Lupus Erythematosus Patients.

  • Jian Xu‎ et al.
  • Journal of immunology research‎
  • 2015‎

This study explores the relationship between autoantibodies and brain density reduction in SLE patients without major neuropsychiatric manifestation (NPSLE). Ninety-five NPSLE patients without obvious cerebral deficits, as determined by conventional MRI, as well as 89 control subjects, underwent high-resolution structural MRI. Whole-brain density of grey matter (GMD) and white matter (WMD) were calculated for each individual, and correlations between the brain density, symptom severity, immunosuppressive agent (ISA), and autoantibody levels were assessed. The GMD and WMD of the SLE group decreased compared to controls. GMD was negatively associated with SLE activity. The WMD of patients who received ISA treatment were higher than that in the patients who did not. The WMD of patients with anticardiolipin (ACL) or anti-SSB/La antibodies was lower than in patients without these antibodies, while the GMD was lower in patients with anti-SM or anti-U1RNP antibodies. Thus, obvious brain atrophy can occur very early even before the development of significant symptoms and specific autoantibodies might contribute to the reduction of GMD or WMD in NPSLE patients. However, ISAs showed protective effects in minimizing GMD and WMD reduction. The presence of these specific autoantibodies might help identify early brain damage in NPSLE patients.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: